Difference between revisions of "deLemus"

From
Jump to navigation Jump to search
Line 2: Line 2:
 
''Dynamic Expedition of Leading Mutations in SARS-CoV-2 Spike Glycoproteins''
 
''Dynamic Expedition of Leading Mutations in SARS-CoV-2 Spike Glycoproteins''
 
</br>
 
</br>
 
+
<!--
 
The dynamic epidemiology of coronavirus disease 2019 (COVID-19) since its outbreak has been a result of the continuous evolution of its etiological agent, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Within the first 2 years of this pandemic, the World Health Organization (WHO) has already announced 4 variants of concern (VOC), namely alpha (B.1.1.7), beta (B.1.351), gamma (P.1), and delta (B.1.617.2), together with numerous variants of interest (VOI). The latest lineage to be designated a VOC would be omicron (B.1.1.529),<ref name="Karim" /> from which a diverse variant soup is generated.<ref>Callaway, E. COVID ‘variant soup’ is making winter surges hard to predict. ''Nature'' '''611,''' 213 (2022).</ref> From the original BA.1 strain of November 2021 to the most recent XBB and BQ.1 strains of late 2022,<ref name="Wang" /><ref name="European Centre" /> each omicron subvariant has successively proliferated and outcompeted its once dominant antecedent.<ref name="Del Rio" /> The emergence of all these variants has brought along many novel mutations that continue to fine-tune the fitness of the virus,<ref>Carabelli, A. M. ''et al.'' SARS-CoV-2 variant biology: Immune escape, transmission and fitness. ''Nat Rev Microbiol'' (2023). DOI: https://doi.org/10.1038/s41579-022-00841-7.</ref><ref>Witte, L. ''et al.'' Epistasis lowers the genetic barrier to SARS-CoV-2 neutralizing antibody escape. ''Nat Commun'' '''14,''' 302 (2023).</ref> leading to its persistent global circulation. Recent emerging variant (EV) data retrieved from GISAID, as of 17 January 2023, has revealed that the top 4 most rapidly spreading lineages are the BA.1.1.22, CH.1.1, XBB.1.5, and BQ.1.1 variants, among which XBB.1.5 has been found to be especially prevalent in the US,<ref>Callaway, E. Coronavirus variant XBB.1.5 rises in the United States — is it a global threat? ''Nature'' '''613,''' 222 (2023).</ref> making up of more than 40% of its sequence coverage in early January 2023.  
 
The dynamic epidemiology of coronavirus disease 2019 (COVID-19) since its outbreak has been a result of the continuous evolution of its etiological agent, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Within the first 2 years of this pandemic, the World Health Organization (WHO) has already announced 4 variants of concern (VOC), namely alpha (B.1.1.7), beta (B.1.351), gamma (P.1), and delta (B.1.617.2), together with numerous variants of interest (VOI). The latest lineage to be designated a VOC would be omicron (B.1.1.529),<ref name="Karim" /> from which a diverse variant soup is generated.<ref>Callaway, E. COVID ‘variant soup’ is making winter surges hard to predict. ''Nature'' '''611,''' 213 (2022).</ref> From the original BA.1 strain of November 2021 to the most recent XBB and BQ.1 strains of late 2022,<ref name="Wang" /><ref name="European Centre" /> each omicron subvariant has successively proliferated and outcompeted its once dominant antecedent.<ref name="Del Rio" /> The emergence of all these variants has brought along many novel mutations that continue to fine-tune the fitness of the virus,<ref>Carabelli, A. M. ''et al.'' SARS-CoV-2 variant biology: Immune escape, transmission and fitness. ''Nat Rev Microbiol'' (2023). DOI: https://doi.org/10.1038/s41579-022-00841-7.</ref><ref>Witte, L. ''et al.'' Epistasis lowers the genetic barrier to SARS-CoV-2 neutralizing antibody escape. ''Nat Commun'' '''14,''' 302 (2023).</ref> leading to its persistent global circulation. Recent emerging variant (EV) data retrieved from GISAID, as of 17 January 2023, has revealed that the top 4 most rapidly spreading lineages are the BA.1.1.22, CH.1.1, XBB.1.5, and BQ.1.1 variants, among which XBB.1.5 has been found to be especially prevalent in the US,<ref>Callaway, E. Coronavirus variant XBB.1.5 rises in the United States — is it a global threat? ''Nature'' '''613,''' 222 (2023).</ref> making up of more than 40% of its sequence coverage in early January 2023.  
 
+
-->
 
==Spike Glycoprotein==
 
==Spike Glycoprotein==
  

Revision as of 15:37, 23 August 2023

Dynamic Expedition of Leading Mutations in SARS-CoV-2 Spike Glycoproteins

Spike Glycoprotein

The spike glycoprotein of SARS-CoV-2 is a trimeric type I viral fusion protein that binds the virus to the angiotensin-converting enzyme 2 (ACE2) receptor of a host cell.[1] It is composed of 2 subunits: the N-terminal subunit 1 (S1) and C-terminal subunit 2 (S2), within which multiple domains lie. The S1 region facilitates ACE2 binding and is made up of an N-terminal domain (NTD), a receptor-binding domain (RBD), and 2 C-terminal subdomains (CTD1 and CTD2), while the downstream S2 region is responsible for mediating virus-host cell membrane fusion.

Update

The identified leading mutations in 2023 are listed as follows [2]:

  • Generated 3D structure of spike protein with highlighted leading mutations (AlphaFold2, colab version 2022).

Here are the recently confirmed leading mutations.

2023.08.04 - 2023.08.22

Outlined Mutations Confirmed in VOC/Emerging Variants
N185D XBB.1.5
L212S FY.4.2
V445A XBC.1.6
L455F EG.5.1.1
F456L EG.5.1 (Eris)
E554Q XBB.1.5.18
Q613H XBB.1.16
T883I XBB.1.16

*The reported mutations of detected variants are from Cov-Lineages[3]


  • Generated 3D structure of spike protein with highlighted leading mutations (AlphaFold2, colab version 2022).

Here are the recently confirmed leading mutations.

2023.06.30 - 2023.07.05

Outlined Mutations Confirmed in VOC/Emerging Variants
H146K FL.2.3 (XBB.1.9.1.2.3)
S446N FL.19
F456L XBF


  • Generated 3D structure of spike protein with highlighted leading mutations (AlphaFold2, colab version 2022).

Here are the recently confirmed leading mutations.

2023.06.01 - 2023.06.13

Outlined Mutations Confirmed in VOC/Emerging Variants
F490P XBB.1.9.1
E554K XBB.1.9.1 (sublineage)
Q675K XBB.1.22.1
L858I CH.1.1.1


  • Generated 3D structure of spike protein with highlighted leading mutations (AlphaFold2, colab version 2022).

Here are the recently confirmed leading mutations.

2023.05.01 - 2023.05.12

Outlined Mutations Confirmed in VOC/Emerging Variants
F456L FD.1.1 & EG.5.1 (2023.08)
S494P XBB.2.3 & XBB.1.1
T572I FY.1 ( XBB.1.22.1.1 )

*The reported mutations of detected variants are from GISAID


  • Generated 3D structure of spike protein with highlighted leading mutations (AlphaFold2, colab version 2022).

Here are the recently confirmed leading mutations.

2023.04.01 - 2023.04.21

Outlined Mutations Confirmed in VOC/Emerging Variants
H146K XBB.1.5 & XBB.1.16
M153I XBB.2.3.3
E180V XBB.1.16
K444R XBB.1.5
T478R XBB.1.16, XBB.1.5, CH.1.1.2 & XBB.2.3
F490P XBB.2.6
S494P XBB.1.5
Q613H XBB.1.16
P621S XBB.2.3
A688V XAY.1.1.1

  • Generated 3D structure of spike protein with highlighted leading mutations (AlphaFold2, colab version 2022).

Here are the recently confirmed leading mutations.

2023.03.01 - 2023.03.21

Outlined Mutations Confirmed in VOC/Emerging Variants
Y248S BQ.1
F490P XBB.1 & XBB.1.5
T547I XBB.1.16
Q613H DV.1, CH.1.1.1 & CH.1.1.17
I666V XBB.1.5
V1264L CH.1.1

  • Generated 3D structure of spike protein with highlighted leading mutations (AlphaFold2, colab version 2022).

Here are the recently confirmed leading mutations.

2023.02.03 - 2023.02.20

Outlined Mutations Confirmed in VOC/Emerging Variants
K147I XBB.1.5.2.1
Y248S BQ.1.1.43
S494P XBB.1.5
Q613H XBB.1.9.2 & XBB.2.4
P612S XBF
T678I BA.2.75 x BA.5
N679R CH.1.1
P1162S XBK.1

*The reported mutations of detected variants are from GISAID[4]

  • Generated 3D structure of spike protein with highlighted leading mutations (AlphaFold2, colab version 2022).

Here are the recently confirmed leading mutations.

2023.01.31

Outlined Mutations Confirmed in VOC/Emerging Variants
V445A BQ.1.1
T883I BQ.1.1

2023.01.17 - 2023.01.25

Outlined Mutations Confirmed in VOC/Emerging Variants
H146- / H146K BQ.1.1 / XBB.1.5
F486A BQ.1.1
E583D BQ.1.1
Q613H BQ.1.1
S939F BQ.1.1


References

  1. Jackson, C. B., Farzan, M., Chen, B. & Choe, H. Mechanisms of SARS-CoV-2 entry into cells. Nat Rev Mol Cell Biol 23, 3 (2021).
  2. deLemus team, Analysis of Leading Mutations in SARS-CoV-2 Spike Glycoproteins (in preparation, 2023).
  3. Cov-Lineages https://cov-lineages.org/
  4. GISAID https://gisaid.org/

Cite error: <ref> tag with name "Del Rio" defined in <references> is not used in prior text.
Cite error: <ref> tag with name "European Centre" defined in <references> is not used in prior text.
Cite error: <ref> tag with name "Karim" defined in <references> is not used in prior text.
Cite error: <ref> tag with name "Wang" defined in <references> is not used in prior text.


Map