Difference between revisions of "deLemus"

From
Jump to navigation Jump to search
(Created page with "- Hasan/Joey please edit this.")
 
(Importing the collected reference by Anthony (Prof Su's Twitter))
Line 1: Line 1:
- Hasan/Joey please edit this.
+
'''SARS-CoV-2 Article Collection'''
 +
{| class="wikitable sortable"
 +
|+
 +
!Name
 +
!Link
 +
!Code
 +
|-
 +
|The GISAID Database
 +
|https://www.gisaid.org/
 +
|0
 +
|-
 +
|Nexstrain SARS-CoV-2 resources
 +
|https://nextstrain.org/sars-cov-2/
 +
|
 +
|-
 +
|A novel  phosphorylation site in SARS-CoV-2 nucleocapsid regulates its RNA-binding  capacity and phase separation in host cells
 +
|<nowiki>https://academic.oup.com/jmcb/advance-article/doi/10.1093/jmcb/mjac003/6510820?login=false#</nowiki>
 +
|0
 +
|-
 +
|Airborne transmission of  respiratory viruses
 +
|<nowiki>https://www.science.org/doi/10.1126/science.abd9149</nowiki>
 +
|0
 +
|-
 +
|SARS-CoV-2 infection in  free-ranging white-tailed deer
 +
|<nowiki>https://www.nature.com/articles/s41586-021-04353-x?utm_source=twitter&utm_medium=social&utm_content=organic&utm_campaign=NGMT_USG_JC01_GL_Nature</nowiki>
 +
|0
 +
|-
 +
|Do childhood colds help the  body respond to COVID?
 +
|<nowiki>https://www.nature.com/articles/d41586-021-03087-0?utm_source=twt_nat&utm_medium=social&utm_campaign=nature</nowiki>
 +
|0
 +
|-
 +
|Identification of driver genes  for critical forms of COVID-19 in a deeply phenotyped young patient cohort
 +
|<nowiki>https://www.science.org/doi/10.1126/scitranslmed.abj7521?utm_campaign=SciMag&utm_source=Social&utm_medium=Twitter</nowiki>
 +
|0
 +
|-
 +
|Immune memory from SARS-CoV-2  infection in hamsters provides variant-independent protection but still  allows virus transmission
 +
|<nowiki>https://www.science.org/doi/10.1126/sciimmunol.abm3131?utm_campaign=SciMag&utm_source=Social&utm_medium=Twitter</nowiki>
 +
|0
 +
|-
 +
|Naive human B cells engage the  receptor binding domain of SARS-CoV-2, variants of concern, and related  sarbecoviruses
 +
|<nowiki>https://www.science.org/doi/10.1126/sciimmunol.abl5842?utm_campaign=SciMag&utm_source=Social&utm_medium=Twitter</nowiki>
 +
|0
 +
|-
 +
|Correlates of protection  against symptomatic and asymptomatic SARS-CoV-2 infection
 +
|<nowiki>https://www.nature.com/articles/s41591-021-01540-1?utm_source=twitter&utm_medium=social&utm_content=organic&utm_campaign=NGMT_USG_JC01_GL_NRJournals</nowiki>
 +
|0
 +
|-
 +
|Immune correlates of  protection by mRNA-1273 vaccine against SARS-CoV-2 in nonhuman primates
 +
|<nowiki>https://www.science.org/doi/full/10.1126/science.abj0299?utm_campaign=SciMag&utm_source=Social&utm_medium=Twitter</nowiki>
 +
|0
 +
|-
 +
|How do vaccinated people  spread Delta? What the science says
 +
|<nowiki>https://www.nature.com/articles/d41586-021-02187-1?utm_source=twt_nat&utm_medium=social&utm_campaign=nature</nowiki>
 +
|0
 +
|-
 +
|Boosting stem cell immunity to  viruses
 +
|<nowiki>https://www.science.org/doi/10.1126/science.abj5673</nowiki>
 +
|0
 +
|-
 +
|Targeting aging cells improves  survival
 +
|<nowiki>https://www.science.org/doi/10.1126/science.abi4474</nowiki>
 +
|0
 +
|-
 +
|After the pandemic:  perspectives on the future trajectory of COVID-19
 +
|<nowiki>https://www.nature.com/articles/s41586-021-03792-w?utm_source=twitter&utm_medium=social&utm_content=organic&utm_campaign=NGMT_USG_JC01_GL_Nature</nowiki>
 +
|2
 +
|-
 +
|Hybrid immunity
 +
|<nowiki>https://www.science.org/doi/10.1126/science.abj2258</nowiki>
 +
|0
 +
|-
 +
|How your DNA may affect  whether you get COVID-19 or become gravely ill
 +
|<nowiki>https://www.sciencenews.org/article/coronavirus-covid-how-dna-genetic-risk-infection-severe-illness</nowiki>
 +
|0
 +
|-
 +
|Naturally enhanced  neutralizing breadth against SARS-CoV-2 one year after infection
 +
|<nowiki>https://www.nature.com/articles/s41586-021-03696-9?utm_source=twitter&utm_medium=social&utm_content=organic&utm_campaign=NGMT_USG_JC01_GL_Nature</nowiki>
 +
|0
 +
|-
 +
|How were the first treatments  for COVID identified?
 +
|<nowiki>https://www.compoundchem.com/2021/06/16/recovery-trial/</nowiki>
 +
|0
 +
|-
 +
|Antibody sugars are  bittersweet
 +
|<nowiki>https://www.science.org/doi/10.1126/science.abj0435</nowiki>
 +
|0
 +
|-
 +
|CRISPR diagnostics
 +
|<nowiki>https://www.science.org/doi/10.1126/science.abi9335</nowiki>
 +
|0
 +
|-
 +
|Complement control for  COVID-19
 +
|<nowiki>https://www.science.org/doi/10.1126/sciimmunol.abj1014</nowiki>
 +
|0
 +
|-
 +
|Estimating infectiousness  throughout SARS-CoV-2 infection course
 +
|<nowiki>https://www.science.org/doi/10.1126/science.abi5273</nowiki>
 +
|0
 +
|-
 +
|Face masks effectively limit  the probability of SARS-CoV-2 transmission
 +
|<nowiki>https://www.science.org/doi/10.1126/science.abg6296</nowiki>
 +
|0
 +
|-
 +
|How COVID broke the evidence  pipeline
 +
|<nowiki>https://www.nature.com/articles/d41586-021-01246-x?utm_source=twitter&utm_medium=social&utm_content=organic&utm_campaign=NGMT_USG_JC01_GL_Nature</nowiki>
 +
|0
 +
|-
 +
|It’s time to consider a patent  reprieve for COVID vaccines
 +
|<nowiki>https://www.nature.com/articles/d41586-021-00863-w?utm_source=twitter&utm_medium=social&utm_content=organic&utm_campaign=NGMT_USG_JC01_GL_Nature</nowiki>
 +
|0
 +
|-
 +
|SARS-CoV-2 transmission  without symptoms
 +
|<nowiki>https://www.science.org/doi/10.1126/science.abf9569</nowiki>
 +
|0
 +
|-
 +
|Five reasons why COVID herd  immunity is probably impossible
 +
|<nowiki>https://www.nature.com/articles/d41586-021-00728-2?utm_source=twitter&utm_medium=social&utm_content=organic&utm_campaign=NGMT_USG_JC01_GL_Nature</nowiki>
 +
|0
 +
|-
 +
|Rare COVID reactions might  hold key to variant-proof vaccines
 +
|<nowiki>https://www.nature.com/articles/d41586-021-00722-8?utm_source=twitter&utm_medium=social&utm_content=organic&utm_campaign=NGMT_USG_JC01_GL_Nature</nowiki>
 +
|0
 +
|-
 +
|Increased mortality in  community-tested cases of SARS-CoV-2 lineage B.1.1.7
 +
|<nowiki>https://www.nature.com/articles/s41586-021-03426-1?utm_source=twitter&utm_medium=social&utm_content=organic&utm_campaign=NGMT_USG_JC01_GL_Nature</nowiki>
 +
|0
 +
|-
 +
|Cell Press Coronavirus  Resource Hub
 +
|<nowiki>https://www.cell.com/COVID-19</nowiki>
 +
|0
 +
|-
 +
|Nexstrain SARS-CoV-2 resources
 +
|<nowiki>https://nextstrain.org/sars-cov-2/</nowiki>
 +
|0
 +
|-
 +
|CoVariants
 +
|<nowiki>https://covariants.org/</nowiki>
 +
|0
 +
|-
 +
|The GISAID Database
 +
|<nowiki>https://www.gisaid.org/</nowiki>
 +
|0
 +
|-
 +
|UniProt (Data Retrieving)
 +
|<nowiki>https://www.uniprot.org/uploadlists/</nowiki>
 +
|0
 +
|-
 +
|Multiple Sequence Alignment
 +
|<nowiki>https://www.ebi.ac.uk/Tools/msa/clustalo/</nowiki>
 +
|0
 +
|-
 +
|InterPro (List of Protein  Family)
 +
|<nowiki>https://www.ebi.ac.uk/interpro/</nowiki>
 +
|0
 +
|-
 +
|More evidence suggests  COVID-19 was in the US by Christmas 2019
 +
|<nowiki>https://apnews.com/article/more-evidence-covid-in-US-by-Christmas-2019-11346afc5e18eee81ebcf35d9e6caee2</nowiki>
 +
|0
 +
|-
 +
|A COVID Vaccine for All
 +
|<nowiki>https://www.scientificamerican.com/article/a-covid-vaccine-for-all/</nowiki>
 +
|1
 +
|-
 +
|Single-cell immunology of  SARS-CoV-2 infection
 +
|<nowiki>https://www.nature.com/articles/s41587-021-01131-y?utm_source=twitter&utm_medium=social&utm_content=organic&utm_campaign=NGMT_USG_JC01_GL_NRJournals</nowiki>
 +
|1
 +
|-
 +
|Innate immunological pathways  in COVID-19 pathogenesis
 +
|<nowiki>https://www.science.org/doi/10.1126/sciimmunol.abm5505?utm_campaign=SciMag&utm_source=Social&utm_medium=Twitter</nowiki>
 +
|1
 +
|-
 +
|Early non-neutralizing,  afucosylated antibody responses are associated with COVID-19 severity
 +
|<nowiki>https://www.science.org/doi/10.1126/scitranslmed.abm7853?utm_campaign=SciMag&utm_source=Social&utm_medium=Twitter</nowiki>
 +
|1
 +
|-
 +
|COVID-19 vaccine side effects:  The positives about feeling bad
 +
|<nowiki>https://www.science.org/doi/10.1126/sciimmunol.abj9256?utm_campaign=SciMag&utm_source=Social&utm_medium=Twitter</nowiki>
 +
|1
 +
|-
 +
|COVID-19 vaccine breakthrough  infections
 +
|<nowiki>https://www.science.org/doi/10.1126/science.abl8487?utm_campaign=SciMag&utm_source=Social&utm_medium=Twitter</nowiki>
 +
|1
 +
|-
 +
|B.1.1.529 escapes the majority  of SARS-CoV-2 neutralizing antibodies of diverse epitopes
 +
|<nowiki>https://www.biorxiv.org/content/10.1101/2021.12.07.470392v1</nowiki>
 +
|1
 +
|-
 +
|Immune dysregulation and  immunopathology induced by SARS-CoV-2 and related coronaviruses — are we our  own worst enemy?
 +
|<nowiki>https://www.nature.com/articles/s41577-021-00656-2?utm_source=twitter&utm_medium=social&utm_content=organic&utm_campaign=NGMT_USG_JC01_GL_NRJournals</nowiki>
 +
|1
 +
|-
 +
|Robust immune responses are  observed after one dose of BNT162b2 mRNA vaccine dose in SARS-CoV-2  experienced individuals
 +
|<nowiki>https://www.science.org/doi/10.1126/scitranslmed.abi8961?utm_campaign=SciMag&utm_source=Social&utm_medium=Twitter</nowiki>
 +
|1
 +
|-
 +
|mRNA vaccines induce durable  immune memory to SARS-CoV-2 and variants of concern
 +
|<nowiki>https://www.science.org/doi/10.1126/science.abm0829?utm_campaign=SciMag&utm_source=Social&utm_medium=Twitter</nowiki>
 +
|1
 +
|-
 +
|Amilorides inhibit SARS-CoV-2  replication in vitro by targeting RNA structures
 +
|<nowiki>https://www.science.org/doi/10.1126/sciadv.abl6096</nowiki>
 +
|1
 +
|-
 +
|Allelic variation in class I  HLA determines CD8+ T cell repertoire shape and cross-reactive memory  responses to SARS-CoV-2
 +
|<nowiki>https://www.science.org/doi/10.1126/sciimmunol.abk3070?utm_campaign=SciMag&utm_source=Social&utm_medium=Twitter</nowiki>
 +
|1
 +
|-
 +
|A broadly cross-reactive  antibody neutralizes and protects against sarbecovirus challenge in mice
 +
|<nowiki>https://www.science.org/doi/10.1126/scitranslmed.abj7125?utm_campaign=SciMag&utm_source=Social&utm_medium=Twitter</nowiki>
 +
|1
 +
|-
 +
|Scent of a vaccine
 +
|<nowiki>https://www.science.org/doi/10.1126/science.abg9857?utm_campaign=SciMag&utm_source=Social&utm_medium=Twitter</nowiki>
 +
|1
 +
|-
 +
|A potent SARS-CoV-2  neutralising nanobody shows therapeutic efficacy in the Syrian golden hamster  model of COVID-19
 +
|<nowiki>https://www.nature.com/articles/s41467-021-25480-z</nowiki>
 +
|1
 +
|-
 +
|High genetic barrier to  SARS-CoV-2 polyclonal neutralizing antibody escape
 +
|<nowiki>https://www.nature.com/articles/s41586-021-04005-0?utm_source=twitter&utm_medium=social&utm_content=organic&utm_campaign=NGMT_USG_JC01_GL_Nature</nowiki>
 +
|1
 +
|-
 +
|Bispecific antibodies  targeting distinct regions of the spike protein potently neutralize  SARS-CoV-2 variants of concern
 +
|<nowiki>https://www.science.org/doi/10.1126/scitranslmed.abj5413?utm_campaign=SciMag&utm_source=Social&utm_medium=Twitter</nowiki>
 +
|1
 +
|-
 +
|Broad betacoronavirus  neutralization by a stem helix–specific human antibody
 +
|<nowiki>https://www.science.org/doi/10.1126/science.abj3321?utm_campaign=SciMag&utm_source=Social&utm_medium=Twitter</nowiki>
 +
|1
 +
|-
 +
|Chimeric spike mRNA vaccines  protect against Sarbecovirus challenge in mice
 +
|<nowiki>https://www.science.org/doi/10.1126/science.abi4506?utm_campaign=SciMag&utm_source=Social&utm_medium=Twitter</nowiki>
 +
|1
 +
|-
 +
|Ultrapotent antibodies against  diverse and highly transmissible SARS-CoV-2 variants
 +
|<nowiki>https://www.science.org/doi/10.1126/science.abh1766</nowiki>
 +
|1
 +
|-
 +
|Cross-reactive antibodies  against human coronaviruses and the animal coronavirome suggest diagnostics  for future zoonotic spillovers
 +
|<nowiki>https://www.science.org/doi/10.1126/sciimmunol.abe9950</nowiki>
 +
|1
 +
|-
 +
|Neutralizing activity of  Sputnik V vaccine sera against SARS-CoV-2 variants
 +
|<nowiki>https://www.nature.com/articles/s41467-021-24909-9?utm_source=twitter&utm_medium=social&utm_content=organic&utm_campaign=NGMT_USG_JC01_GL_NRJournals</nowiki>
 +
|1
 +
|-
 +
|Broad sarbecovirus  neutralization by a human monoclonal antibody
 +
|<nowiki>https://www.nature.com/articles/s41586-021-03817-4?utm_source=twitter&utm_medium=social&utm_content=organic&utm_campaign=NGMT_USG_JC01_GL_Nature</nowiki>
 +
|1
 +
|-
 +
|Rapid and stable mobilization  of CD8+ T cells by SARS-CoV-2 mRNA vaccine
 +
|<nowiki>https://www.nature.com/articles/s41586-021-03841-4?utm_source=twitter&utm_medium=social&utm_content=organic&utm_campaign=NGMT_USG_JC01_GL_Nature</nowiki>
 +
|1
 +
|-
 +
|Immune responses against  SARS-CoV-2 variants after heterologous and homologous ChAdOx1  nCoV-19/BNT162b2 vaccination
 +
|<nowiki>https://www.nature.com/articles/s41591-021-01449-9?utm_source=twitter&utm_medium=social&utm_content=organic&utm_campaign=NGMT_USG_JC01_GL_NRJournals</nowiki>
 +
|1
 +
|-
 +
|Systems vaccinology of the  BNT162b2 mRNA vaccine in humans
 +
|<nowiki>https://www.nature.com/articles/s41586-021-03791-x?utm_source=twitter&utm_medium=social&utm_content=organic&utm_campaign=NGMT_USG_JC01_GL_Nature</nowiki>
 +
|1
 +
|-
 +
|A recombinant spike protein  subunit vaccine confers protective immunity against SARS-CoV-2 infection and  transmission in hamsters
 +
|<nowiki>https://www.science.org/doi/10.1126/scitranslmed.abg1143</nowiki>
 +
|1
 +
|-
 +
|Masitinib is a broad  coronavirus 3CL inhibitor that blocks replication of SARS-CoV-2
 +
|<nowiki>https://www.science.org/doi/full/10.1126/science.abg5827</nowiki>
 +
|1
 +
|-
 +
|Engineered single-domain  antibodies tackle COVID variants
 +
|<nowiki>https://www.nature.com/articles/d41586-021-01721-5?utm_source=twitter&utm_medium=social&utm_content=organic&utm_campaign=NGMT_USG_JC01_GL_Nature</nowiki>
 +
|1
 +
|-
 +
|CD8+ T cells specific for  conserved coronavirus epitopes correlate with milder disease in patients with  COVID-19
 +
|<nowiki>https://www.science.org/doi/10.1126/sciimmunol.abg5669</nowiki>
 +
|1
 +
|-
 +
|Evidence for increased  breakthrough rates of SARS-CoV-2 variants of concern in  BNT162b2-mRNA-vaccinated individuals
 +
|<nowiki>https://www.nature.com/articles/s41591-021-01413-7?utm_source=twitter&utm_medium=social&utm_content=organic&utm_campaign=NGMT_USG_JC01_GL_NRJournals</nowiki>
 +
|1
 +
|-
 +
|Artificial Proteins Never Seen  in the Natural World Are Becoming New COVID Vaccines and Medicines
 +
|<nowiki>https://www.scientificamerican.com/article/artificial-proteins-never-seen-in-the-natural-world-are-becoming-new-covid-vaccines-and-medicines/</nowiki>
 +
|1
 +
|-
 +
|Drug-induced phospholipidosis  confounds drug repurposing for SARS-CoV-2
 +
|<nowiki>https://www.science.org/doi/full/10.1126/science.abi4708</nowiki>
 +
|1
 +
|-
 +
|Impact of vaccination on new  SARS-CoV-2 infections in the United Kingdom
 +
|<nowiki>https://www.nature.com/articles/s41591-021-01410-w?utm_source=twitter&utm_medium=social&utm_content=organic&utm_campaign=NGMT_USG_JC01_GL_NRJournals</nowiki>
 +
|1
 +
|-
 +
|Immunogenicity of Ad26.COV2.S  vaccine against SARS-CoV-2 variants in humans
 +
|<nowiki>https://www.nature.com/articles/s41586-021-03681-2?utm_source=twitter&utm_medium=social&utm_content=organic&utm_campaign=NGMT_USG_JC01_GL_Nature</nowiki>
 +
|1
 +
|-
 +
|BNT162b2 vaccine induces  neutralizing antibodies and poly-specific T cells in humans
 +
|<nowiki>https://www.nature.com/articles/s41586-021-03653-6?utm_source=twitter&utm_medium=social&utm_content=organic&utm_campaign=NGMT_USG_JC01_GL_Nature</nowiki>
 +
|1
 +
|-
 +
|SARS-CoV-2 variants of concern  partially escape humoral but not T cell responses in COVID-19 convalescent  donors and vaccine recipients
 +
|<nowiki>https://www.science.org/doi/10.1126/sciimmunol.abj1750</nowiki>
 +
|1
 +
|-
 +
|Shared B cell memory to  coronaviruses and other pathogens varies in human age groups and tissues
 +
|<nowiki>https://www.science.org/doi/10.1126/science.abf6648</nowiki>
 +
|1
 +
|-
 +
|A network analysis of COVID-19  mRNA vaccine patents
 +
|<nowiki>https://www.nature.com/articles/s41587-021-00912-9?utm_source=twitter&utm_medium=social&utm_content=organic&utm_campaign=NGMT_USG_JC01_GL_NRJournals</nowiki>
 +
|1
 +
|-
 +
|High titers and low  fucosylation of early human anti–SARS-CoV-2 IgG promote inflammation by  alveolar macrophages
 +
|<nowiki>https://www.science.org/doi/10.1126/scitranslmed.abf8654</nowiki>
 +
|1
 +
|-
 +
|COVID-19–related anosmia is  associated with viral persistence and inflammation in human olfactory  epithelium and brain infection in hamsters
 +
|<nowiki>https://www.science.org/doi/10.1126/scitranslmed.abf8396</nowiki>
 +
|1
 +
|-
 +
|How Pfizer Makes Its Covid-19  Vaccine
 +
|<nowiki>https://www.nytimes.com/interactive/2021/health/pfizer-coronavirus-vaccine.html?smid=tw-share</nowiki>
 +
|1
 +
|-
 +
|A broadly neutralizing  antibody protects against SARS-CoV, pre-emergent bat CoVs, and SARS-CoV-2  variants in mice
 +
|<nowiki>https://www.biorxiv.org/content/10.1101/2021.04.27.441655v1</nowiki>
 +
|1
 +
|-
 +
|Adjuvanting a subunit COVID-19  vaccine to induce protective immunity
 +
|<nowiki>https://www.nature.com/articles/s41586-021-03530-2</nowiki>
 +
|1
 +
|-
 +
|The SARS-CoV-2 mRNA-1273  vaccine elicits more RBD-focused neutralization, but with broader antibody  binding within the RBD
 +
|<nowiki>https://www.biorxiv.org/content/10.1101/2021.04.14.439844v1</nowiki>
 +
|1
 +
|-
 +
|The neutralizing antibody,  LY-CoV555, protects against SARS-CoV-2 infection in nonhuman primates
 +
|<nowiki>https://www.science.org/doi/10.1126/scitranslmed.abf1906</nowiki>
 +
|1
 +
|-
 +
|Immunity to SARS-CoV-2  variants of concern
 +
|<nowiki>https://www.science.org/doi/10.1126/science.abg7404</nowiki>
 +
|1
 +
|-
 +
|Lilly COVID-19 Antibody  Combination Shows 87% Risk Reduction in Phase III Trial
 +
|<nowiki>https://www.genengnews.com/news/lilly-covid-19-antibody-combination-shows-87-risk-reduction-in-phase-iii-trial/</nowiki>
 +
|1
 +
|-
 +
|Perspectives on therapeutic  neutralizing antibodies against the Novel Coronavirus SARS-CoV-2
 +
|<nowiki>https://www.ijbs.com/v16p1718.htm</nowiki>
 +
|1
 +
|-
 +
|Targeting the SARS-CoV-2-spike  protein: from antibodies to miniproteins and peptides
 +
|<nowiki>https://pubs.rsc.org/en/content/articlelanding/2021/md/d0md00385a#!divAbstract</nowiki>
 +
|1
 +
|-
 +
|SARS-CoV-2 501Y.V2 escapes  neutralization by South African COVID-19 donor plasma
 +
|<nowiki>https://www.nature.com/articles/s41591-021-01285-x</nowiki>
 +
|1
 +
|-
 +
|A therapeutic neutralizing  antibody targeting receptor binding domain of SARS-CoV-2 spike protein
 +
|<nowiki>https://www.nature.com/articles/s41467-020-20602-5</nowiki>
 +
|1
 +
|-
 +
|Antibody responses to the  BNT162b2 mRNA vaccine in individuals previously infected with SARS-CoV-2
 +
|<nowiki>https://www.nature.com/articles/s41591-021-01325-6</nowiki>
 +
|1
 +
|-
 +
|The neutralizing antibody,  LY-CoV555, protects against SARS-CoV-2 infection in non-human primates
 +
|<nowiki>https://stm.sciencemag.org/content/early/2021/04/05/scitranslmed.abf1906.full</nowiki>
 +
|1
 +
|-
 +
|Evolutionary trajectory of  SARS-CoV-2 and emerging variants
 +
|<nowiki>https://virologyj.biomedcentral.com/articles/10.1186/s12985-021-01633-w</nowiki>
 +
|2
 +
|-
 +
|Dynamic Expedition of Leading  Mutations in SARS-CoV-2 Spike Glycoproteins
 +
|<nowiki>https://www.biorxiv.org/content/10.1101/2021.12.29.474427v1</nowiki>
 +
|2
 +
|-
 +
|Mapping the proteo-genomic  convergence of human diseases
 +
|<nowiki>https://www.science.org/doi/10.1126/science.abj1541?utm_campaign=SciMag&utm_source=Social&utm_medium=Twitter</nowiki>
 +
|2
 +
|-
 +
|From Alpha to Epsilon:  Consortium study illuminates surfaces of Spike most resistant to antibody  escape
 +
|<nowiki>https://www.lji.org/news-events/news/post/from-alpha-to-epsilon-consortium-study-illuminates-surfaces-of-spike-most-resistant-to-antibody-escape/</nowiki>
 +
|2
 +
|-
 +
|Defining variant-resistant  epitopes targeted by SARS-CoV-2 antibodies: A global consortium study
 +
|<nowiki>https://www.science.org/doi/10.1126/science.abh2315#.YVFR4Ob9en8.twitter</nowiki>
 +
|2
 +
|-
 +
|The biological and clinical  significance of emerging SARS-CoV-2 variants
 +
|<nowiki>https://www.nature.com/articles/s41576-021-00408-x?utm_source=twitter&utm_medium=social&utm_content=organic&utm_campaign=NGMT_USG_JC01_GL_NRJournals</nowiki>
 +
|2
 +
|-
 +
|Evolution of a virus-like  architecture and packaging mechanism in a repurposed bacterial protein
 +
|<nowiki>https://www.science.org/doi/10.1126/science.abg2822</nowiki>
 +
|2
 +
|-
 +
|Spike mutation T403R allows  bat coronavirus RaTG13 to use human ACE2
 +
|<nowiki>https://www.biorxiv.org/content/10.1101/2021.05.31.446386v1</nowiki>
 +
|2
 +
|-
 +
|Evolution of antibody immunity  to SARS-CoV-2
 +
|<nowiki>https://www.nature.com/articles/s41586-021-03207-w</nowiki>
 +
|2
 +
|-
 +
|Evolution of antibody immunity  to SARS-CoV2
 +
|<nowiki>https://www.nature.com/articles/s41586-021-03207-w</nowiki>
 +
|2
 +
|-
 +
|Innovative X-ray imaging shows  COVID-19 can cause vascular damage to the heart
 +
|<nowiki>https://medicalxpress.com/news/2021-12-x-ray-imaging-covid-vascular-heart.html</nowiki>
 +
|3
 +
|-
 +
|Bacteriophage self-counting in  the presence of viral replication
 +
|<nowiki>https://www.pnas.org/content/118/51/e2104163118</nowiki>
 +
|3
 +
|-
 +
|Structural analysis of  receptor binding domain mutations in SARS-CoV-2 variants of concern that  modulate ACE2 and antibody binding
 +
|<nowiki>https://www.cell.com/cell-reports/fulltext/S2211-1247(21)01652-1#.YbBFgwgnRMI.twitter</nowiki>
 +
|3
 +
|-
 +
|Structural basis for continued  antibody evasion by the SARS-CoV-2 receptor binding domain
 +
|<nowiki>https://www.science.org/doi/10.1126/science.abl6251?utm_campaign=SciMag&utm_source=Social&utm_medium=Twitter</nowiki>
 +
|3
 +
|-
 +
|Ensemble cryo-electron  microscopy reveals conformational states of the nsp13 helicase in the  SARS-CoV-2 helicase replication-transcription complex
 +
|<nowiki>https://www.biorxiv.org/content/10.1101/2021.11.10.468168v1</nowiki>
 +
|3
 +
|-
 +
|Membrane fusion and immune  evasion by the spike protein of SARS-CoV-2 Delta variant
 +
|<nowiki>https://www.science.org/doi/10.1126/science.abl9463?utm_campaign=SciMag&utm_source=Social&utm_medium=Twitter</nowiki>
 +
|3
 +
|-
 +
|Structural basis of mismatch  recognition by a SARS-CoV-2 proofreading enzyme
 +
|<nowiki>https://www.science.org/doi/full/10.1126/science.abi9310?utm_campaign=SciMag&utm_source=Social&utm_medium=Twitter</nowiki>
 +
|3
 +
|-
 +
|Water-Triggered, Irreversible  Conformational Change of SARS-CoV-2 Main Protease on Passing from the Solid  State to Aqueous Solution
 +
|<nowiki>https://pubs.acs.org/doi/10.1021/jacs.1c05301</nowiki>
 +
|3
 +
|-
 +
|A glycan gate controls opening  of the SARS-CoV-2 spike protein
 +
|<nowiki>https://www.nature.com/articles/s41557-021-00758-3?utm_source=twitter&utm_medium=social&utm_content=organic&utm_campaign=NGMT_USG_JC01_GL_NRJournals</nowiki>
 +
|3
 +
|-
 +
|The antiandrogen enzalutamide  downregulates TMPRSS2 and reduces cellular entry of SARS-CoV-2 in human lung  cells
 +
|<nowiki>https://www.nature.com/articles/s41467-021-24342-y?utm_source=twitter&utm_medium=social&utm_content=organic&utm_campaign=NGMT_USG_JC01_GL_NRJournals</nowiki>
 +
|3
 +
|-
 +
|Identification of  SARS-CoV-2–induced pathways reveals drug repurposing strategies
 +
|<nowiki>https://www.science.org/doi/10.1126/sciadv.abh3032</nowiki>
 +
|3
 +
|-
 +
|Mn2+ coordinates  Cap-0-RNA to align substrates for efficient 2′-O-methyl transfer by  SARS-CoV-2 nsp16
 +
|<nowiki>https://www.science.org/doi/10.1126/scisignal.abh2071</nowiki>
 +
|3
 +
|-
 +
|A potential interaction  between the SARS-CoV-2 spike protein and nicotinic acetylcholine receptors
 +
|<nowiki>https://www.cell.com/biophysj/fulltext/S0006-3495(21)00146-6</nowiki>
 +
|3
 +
|-
 +
|Structural basis of ribosomal  frameshifting during translation of the SARS-CoV-2 RNA genome
 +
|<nowiki>https://www.science.org/doi/10.1126/science.abf3546</nowiki>
 +
|3
 +
|-
 +
|Protective efficacy of  Ad26.COV2.S against SARS-CoV-2 B.1.351 in macaques
 +
|<nowiki>https://www.nature.com/articles/s41586-021-03732-8?utm_source=twitter&utm_medium=social&utm_content=organic&utm_campaign=NGMT_USG_JC01_GL_Nature</nowiki>
 +
|3
 +
|-
 +
|Cryo-EM structure of  SARS-CoV-2 ORF3a in lipid nanodiscs
 +
|<nowiki>https://www.nature.com/articles/s41594-021-00619-0?utm_source=twitter&utm_medium=social&utm_content=organic&utm_campaign=NGMT_USG_JC01_GL_NRJournals</nowiki>
 +
|3
 +
|-
 +
|A multi-omics investigation of  the composition and function of extracellular vesicles along the temporal  trajectory of COVID-19
 +
|<nowiki>https://www.nature.com/articles/s42255-021-00425-4?utm_source=twitter&utm_medium=social&utm_content=organic&utm_campaign=NGMT_USG_JC01_GL_NRJournals</nowiki>
 +
|3
 +
|-
 +
|Improving SARS-CoV-2  structures: Peer review by early coordinate release
 +
|<nowiki>https://www.cell.com/biophysj/fulltext/S0006-3495(21)00046-1</nowiki>
 +
|3
 +
|-
 +
|Cooperative multivalent  receptor binding promotes exposure of the SARS-CoV-2 fusion machinery core
 +
|<nowiki>https://www.biorxiv.org/content/10.1101/2021.05.24.445443v2</nowiki>
 +
|3
 +
|-
 +
|Revealing the spike's real  shape
 +
|<nowiki>https://www.science.org/content/blog-post/revealing-spike-s-real-shape</nowiki>
 +
|3
 +
|-
 +
|SARS-CoV-2 gene content and  COVID-19 mutation impact by comparing 44 Sarbecovirus genomes
 +
|<nowiki>https://www.nature.com/articles/s41467-021-22905-7?utm_source=twitter&utm_medium=social&utm_content=organic&utm_campaign=NGMT_USG_JC01_GL_NRJournals</nowiki>
 +
|3
 +
|-
 +
|X-ray screening identifies  active site and allosteric inhibitors of SARS-CoV-2 main protease
 +
|<nowiki>https://www.science.org/doi/10.1126/science.abf7945</nowiki>
 +
|3
 +
|-
 +
|Viral genomes reveal patterns  of the SARS-CoV-2 outbreak in Washington State
 +
|<nowiki>https://www.science.org/doi/10.1126/scitranslmed.abf0202</nowiki>
 +
|3
 +
|-
 +
|COVID-19 tissue atlases reveal  SARS-CoV-2 pathology and cellular targets
 +
|<nowiki>https://www.nature.com/articles/s41586-021-03570-8?utm_source=twitter&utm_medium=social&utm_content=organic&utm_campaign=NGMT_USG_JC01_GL_Nature</nowiki>
 +
|3
 +
|-
 +
|Structural biology in the time  of COVID-19: perspectives on methods and milestones
 +
|<nowiki>https://journals.iucr.org/m/issues/2021/03/00/mf5052/index.html</nowiki>
 +
|3
 +
|-
 +
|Massively Multiplexed Affinity  Characterization of Therapeutic Antibodies Against SARS-CoV-2 Variants
 +
|<nowiki>https://www.biorxiv.org/content/10.1101/2021.04.27.440939v1</nowiki>
 +
|3
 +
|-
 +
|Fine-tuning the Spike: Role of  the nature and topology of the glycan shield in the structure and dynamics of  the SARS-CoV-2 S
 +
|<nowiki>https://www.biorxiv.org/content/10.1101/2021.04.01.438036v2</nowiki>
 +
|3
 +
|-
 +
|Identification of lectin  receptors for conserved SARS-CoV-2 glycosylation sites
 +
|<nowiki>https://www.biorxiv.org/content/10.1101/2021.04.01.438087v1</nowiki>
 +
|3
 +
|-
 +
|Electrostatic interactions  between the SARS-CoV-2 virus and a charged electret fibre
 +
|<nowiki>https://pubs.rsc.org/en/content/articlelanding/2021/sm/d1sm00232e</nowiki>
 +
|3
 +
|-
 +
|How SARS-CoV-2’s Sugar-Coated  Shield Helps Activate the Virus
 +
|<nowiki>https://www.biophysics.org/news-room/how-sars-cov-2s-sugar-coated-shield-helps-activate-the-virus</nowiki>
 +
|3
 +
|-
 +
|Structural basis for  backtracking by the SARS-CoV-2 replication-transcription complex
 +
|<nowiki>https://www.biorxiv.org/content/10.1101/2021.03.13.435256v1</nowiki>
 +
|3
 +
|-
 +
|The emerging plasticity of  SARS-CoV-2
 +
|<nowiki>https://science.sciencemag.org/content/371/6536/1306.full</nowiki>
 +
|3
 +
|-
 +
|Prospective mapping of viral  mutations that escape antibodies used to treat COVID-19
 +
|<nowiki>https://science.sciencemag.org/content/371/6531/850</nowiki>
 +
|3
 +
|-
 +
|Identification of lection  receptor for conserved SARS-C0V-2 glycosilation
 +
|<nowiki>https://www.biorxiv.org/content/10.1101/2021.04.01.438087v1</nowiki>
 +
|3
 +
|-
 +
|Computational epitope map of  SARS-CoV-2 spike protein
 +
|<nowiki>https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1008790</nowiki>
 +
|3
 +
|-
 +
|Activity of convalescent and  vaccine serum against SARS-CoV-2 Omicron
 +
|<nowiki>https://www.nature.com/articles/s41586-022-04399-5#Echobox=1641674359</nowiki>
 +
|4
 +
|-
 +
|Structural basis of Omicron  neutralization by affinity-matured public antibodies
 +
|<nowiki>https://www.biorxiv.org/content/10.1101/2022.01.03.474825v1</nowiki>
 +
|4
 +
|-
 +
|The hyper-transmissible  SARS-CoV-2 Omicron variant exhibits significant antigenic change, vaccine  escape and a switch in cell entry mechanism
 +
|<nowiki>https://www.gla.ac.uk/media/Media_829360_smxx.pdf</nowiki>
 +
|4
 +
|-
 +
|Exponential growth, high  prevalence of SARS-CoV-2, and vaccine effectiveness associated with the Delta  variant
 +
|<nowiki>https://www.science.org/doi/10.1126/science.abl9551?utm_campaign=SciMag&utm_source=Social&utm_medium=Twitter</nowiki>
 +
|4
 +
|-
 +
|CryoEM structure of Omicron  (B.1.1.529) variant spike protein in complex with human ACE2 reveals new salt  bridges formed by mutated residues R498 and R493 in the RBD and residues D38  and E35, respectively, in ACE2.
 +
|<nowiki>https://twitter.com/cryoem_UBC/status/1471390036851511299</nowiki>
 +
|4
 +
|-
 +
|SARS-CoV-2 B.1.1.529 variant  (Omicron) evades neutralization by sera from vaccinated and convalescent  individuals
 +
|<nowiki>https://www.medrxiv.org/content/10.1101/2021.12.08.21267491v1</nowiki>
 +
|4
 +
|-
 +
|Modelling the potential  consequences of the Omicron SARS-CoV-2 variant in England
 +
|<nowiki>https://cmmid.github.io/topics/covid19/omicron-england.html</nowiki>
 +
|4
 +
|-
 +
|Omicron and Delta Variant of  SARS-CoV-2: A Comparative Computational Study of Spike protein
 +
|<nowiki>https://www.biorxiv.org/content/10.1101/2021.12.02.470946v1</nowiki>
 +
|4
 +
|-
 +
|Where did ‘weird’ Omicron come  from?
 +
|<nowiki>https://www.science.org/content/article/where-did-weird-omicron-come?utm_campaign=NewsfromScience&utm_source=Social&utm_medium=Twitter</nowiki>
 +
|4
 +
|-
 +
|The Omicron SARSCoV2  mutations in each gene and the drugs, candidates, & vaccines that target  them. The 3CL protease and RNA polymerase have only 1 mutation each (unlike  spike, which has >30); the drug candidates targeting them might be more  likely to retain efficacy.
 +
|<nowiki>https://twitter.com/davidrliu/status/1464714206150807559/photo/1</nowiki>
 +
|4
 +
|-
 +
|The mutation map of the 5  Variants of Concern
 +
|<nowiki>https://covariants.org/shared-mutations</nowiki>
 +
|4
 +
|-
 +
|Classification of Omicron  (B.1.1.529): SARS-CoV-2 Variant of Concern
 +
|<nowiki>https://www.who.int/news/item/26-11-2021-classification-of-omicron-(b.1.1.529)-sars-cov-2-variant-of-concern</nowiki>
 +
|4
 +
|-
 +
|Molecular basis of immune  evasion by the Delta and Kappa SARS-CoV-2 variants
 +
|<nowiki>https://www.science.org/doi/10.1126/science.abl8506?utm_campaign=SciMag&utm_source=Social&utm_medium=Twitter</nowiki>
 +
|4
 +
|-
 +
|The mutation that helps Delta  spread like wildfire
 +
|<nowiki>https://www.nature.com/articles/d41586-021-02275-2?utm_source=twitter&utm_medium=social&utm_content=organic&utm_campaign=NGMT_USG_JC01_GL_Nature</nowiki>
 +
|4
 +
|-
 +
|SARS-CoV-2 immune evasion by  the B.1.427/B.1.429 variant of concern
 +
|<nowiki>https://www.science.org/doi/10.1126/science.abi7994</nowiki>
 +
|4
 +
|-
 +
|Spatiotemporal invasion  dynamics of SARS-CoV-2 lineage B.1.1.7 emergence
 +
|<nowiki>https://www.science.org/doi/full/10.1126/science.abj0113</nowiki>
 +
|4
 +
|-
 +
|Reduced sensitivity of  SARS-CoV-2 variant Delta to antibody neutralization
 +
|<nowiki>https://www.nature.com/articles/s41586-021-03777-9?utm_source=twitter&utm_medium=social&utm_content=organic&utm_campaign=NGMT_USG_JC01_GL_Nature</nowiki>
 +
|4
 +
|-
 +
|Fe-S cofactors in the  SARS-CoV-2 RNA-dependent RNA polymerase are potential antiviral targets
 +
|<nowiki>https://www.science.org/doi/10.1126/science.abi5224</nowiki>
 +
|4
 +
|-
 +
|Coronavirus variants are  spreading in India — what scientists know so far
 +
|<nowiki>https://www.nature.com/articles/d41586-021-01274-7?utm_source=twitter&utm_medium=social&utm_content=organic&utm_campaign=NGMT_USG_JC01_GL_Nature</nowiki>
 +
|4
 +
|-
 +
|Genomics and epidemiology of  the P.1 SARS-CoV-2 lineage in Manaus, Brazil
 +
|<nowiki>https://www.science.org/doi/10.1126/science.abh2644</nowiki>
 +
|4
 +
|-
 +
|A novel variant of interest of  SARS-CoV-2 with multiple spike mutations detected through travel surveillance  in Africa
 +
|<nowiki>https://www.krisp.org.za/publications.php?pubid=330</nowiki>
 +
|4
 +
|-
 +
|Antibody resistance of  SARS-CoV-2 variants B.1.351 and B.1.1.7
 +
|<nowiki>https://www.nature.com/articles/s41586-021-03398-2</nowiki>
 +
|4
 +
|-
 +
|Development of potency,  breadth and resilience to viral escape mutation in SARS-CoV-2 neutralizing  anitbodies
 +
|<nowiki>https://www.biorxiv.org/content/10.1101/2021.03.07.434227v1</nowiki>
 +
|4
 +
|-
 +
|<nowiki>SARS-CoV-2 Variants | UK+  South African + Brazil Variants</nowiki>
 +
|<nowiki>https://www.youtube.com/watch?v=OYgVmOLF2mY</nowiki>
 +
|4
 +
|-
 +
|Summary of Clinical Data on  New Coronavirus Variant, Suggests Humans can still win the Long war [Chinese]
 +
|<nowiki>https://m.weibo.cn/status/4647414625212687?sourceType=weixin&from=10AC195010&wm=4260_0001&featurecode=newtitle</nowiki>
 +
|4
 +
|-
 +
|Delta Variant US confirmed  rate doubles in 7 days! [Chinese]
 +
|<nowiki>https://mp.weixin.qq.com/s/8lRnwUUz_3dV7QMtfg2s4w</nowiki>
 +
|4
 +
|-
 +
|Delta variant isn’t over,  Delta+ variant strikes again [Chinese]
 +
|<nowiki>https://m.weibo.cn/status/4650675290506335?sourceType=weixin&from=10B6195010&wm=2468_1001&featurecode=newtitle</nowiki>
 +
|4
 +
|-
 +
|Delta coronavirus variant:  scientists brace for impact
 +
|<nowiki>https://www.nature.com/articles/d41586-021-01696-3?utm_source=twt_nat&utm_medium=social&utm_campaign=nature</nowiki>
 +
|4
 +
|-
 +
|Menacing: What is the new  crown Delta mutant, and how can we respond? [Chinese]
 +
|<nowiki>https://mp.weixin.qq.com/s/g9gPLEN6R02F49eRGGSuAA</nowiki>
 +
|4
 +
|-
 +
|Race to understand Sars-CoV-2  variants amid fears virus might evade vaccines
 +
|<nowiki>https://www.chemistryworld.com/news/race-to-understand-sars-cov-2-variants-amid-fears-virus-might-evade-vaccines/4013891.article</nowiki>
 +
|4
 +
|}

Revision as of 19:11, 11 February 2022

SARS-CoV-2 Article Collection

Name Link Code
The GISAID Database https://www.gisaid.org/ 0
Nexstrain SARS-CoV-2 resources https://nextstrain.org/sars-cov-2/
A novel phosphorylation site in SARS-CoV-2 nucleocapsid regulates its RNA-binding capacity and phase separation in host cells https://academic.oup.com/jmcb/advance-article/doi/10.1093/jmcb/mjac003/6510820?login=false# 0
Airborne transmission of respiratory viruses https://www.science.org/doi/10.1126/science.abd9149 0
SARS-CoV-2 infection in free-ranging white-tailed deer https://www.nature.com/articles/s41586-021-04353-x?utm_source=twitter&utm_medium=social&utm_content=organic&utm_campaign=NGMT_USG_JC01_GL_Nature 0
Do childhood colds help the body respond to COVID? https://www.nature.com/articles/d41586-021-03087-0?utm_source=twt_nat&utm_medium=social&utm_campaign=nature 0
Identification of driver genes for critical forms of COVID-19 in a deeply phenotyped young patient cohort https://www.science.org/doi/10.1126/scitranslmed.abj7521?utm_campaign=SciMag&utm_source=Social&utm_medium=Twitter 0
Immune memory from SARS-CoV-2 infection in hamsters provides variant-independent protection but still allows virus transmission https://www.science.org/doi/10.1126/sciimmunol.abm3131?utm_campaign=SciMag&utm_source=Social&utm_medium=Twitter 0
Naive human B cells engage the receptor binding domain of SARS-CoV-2, variants of concern, and related sarbecoviruses https://www.science.org/doi/10.1126/sciimmunol.abl5842?utm_campaign=SciMag&utm_source=Social&utm_medium=Twitter 0
Correlates of protection against symptomatic and asymptomatic SARS-CoV-2 infection https://www.nature.com/articles/s41591-021-01540-1?utm_source=twitter&utm_medium=social&utm_content=organic&utm_campaign=NGMT_USG_JC01_GL_NRJournals 0
Immune correlates of protection by mRNA-1273 vaccine against SARS-CoV-2 in nonhuman primates https://www.science.org/doi/full/10.1126/science.abj0299?utm_campaign=SciMag&utm_source=Social&utm_medium=Twitter 0
How do vaccinated people spread Delta? What the science says https://www.nature.com/articles/d41586-021-02187-1?utm_source=twt_nat&utm_medium=social&utm_campaign=nature 0
Boosting stem cell immunity to viruses https://www.science.org/doi/10.1126/science.abj5673 0
Targeting aging cells improves survival https://www.science.org/doi/10.1126/science.abi4474 0
After the pandemic: perspectives on the future trajectory of COVID-19 https://www.nature.com/articles/s41586-021-03792-w?utm_source=twitter&utm_medium=social&utm_content=organic&utm_campaign=NGMT_USG_JC01_GL_Nature 2
Hybrid immunity https://www.science.org/doi/10.1126/science.abj2258 0
How your DNA may affect whether you get COVID-19 or become gravely ill https://www.sciencenews.org/article/coronavirus-covid-how-dna-genetic-risk-infection-severe-illness 0
Naturally enhanced neutralizing breadth against SARS-CoV-2 one year after infection https://www.nature.com/articles/s41586-021-03696-9?utm_source=twitter&utm_medium=social&utm_content=organic&utm_campaign=NGMT_USG_JC01_GL_Nature 0
How were the first treatments for COVID identified? https://www.compoundchem.com/2021/06/16/recovery-trial/ 0
Antibody sugars are bittersweet https://www.science.org/doi/10.1126/science.abj0435 0
CRISPR diagnostics https://www.science.org/doi/10.1126/science.abi9335 0
Complement control for COVID-19 https://www.science.org/doi/10.1126/sciimmunol.abj1014 0
Estimating infectiousness throughout SARS-CoV-2 infection course https://www.science.org/doi/10.1126/science.abi5273 0
Face masks effectively limit the probability of SARS-CoV-2 transmission https://www.science.org/doi/10.1126/science.abg6296 0
How COVID broke the evidence pipeline https://www.nature.com/articles/d41586-021-01246-x?utm_source=twitter&utm_medium=social&utm_content=organic&utm_campaign=NGMT_USG_JC01_GL_Nature 0
It’s time to consider a patent reprieve for COVID vaccines https://www.nature.com/articles/d41586-021-00863-w?utm_source=twitter&utm_medium=social&utm_content=organic&utm_campaign=NGMT_USG_JC01_GL_Nature 0
SARS-CoV-2 transmission without symptoms https://www.science.org/doi/10.1126/science.abf9569 0
Five reasons why COVID herd immunity is probably impossible https://www.nature.com/articles/d41586-021-00728-2?utm_source=twitter&utm_medium=social&utm_content=organic&utm_campaign=NGMT_USG_JC01_GL_Nature 0
Rare COVID reactions might hold key to variant-proof vaccines https://www.nature.com/articles/d41586-021-00722-8?utm_source=twitter&utm_medium=social&utm_content=organic&utm_campaign=NGMT_USG_JC01_GL_Nature 0
Increased mortality in community-tested cases of SARS-CoV-2 lineage B.1.1.7 https://www.nature.com/articles/s41586-021-03426-1?utm_source=twitter&utm_medium=social&utm_content=organic&utm_campaign=NGMT_USG_JC01_GL_Nature 0
Cell Press Coronavirus Resource Hub https://www.cell.com/COVID-19 0
Nexstrain SARS-CoV-2 resources https://nextstrain.org/sars-cov-2/ 0
CoVariants https://covariants.org/ 0
The GISAID Database https://www.gisaid.org/ 0
UniProt (Data Retrieving) https://www.uniprot.org/uploadlists/ 0
Multiple Sequence Alignment https://www.ebi.ac.uk/Tools/msa/clustalo/ 0
InterPro (List of Protein Family) https://www.ebi.ac.uk/interpro/ 0
More evidence suggests COVID-19 was in the US by Christmas 2019 https://apnews.com/article/more-evidence-covid-in-US-by-Christmas-2019-11346afc5e18eee81ebcf35d9e6caee2 0
A COVID Vaccine for All https://www.scientificamerican.com/article/a-covid-vaccine-for-all/ 1
Single-cell immunology of SARS-CoV-2 infection https://www.nature.com/articles/s41587-021-01131-y?utm_source=twitter&utm_medium=social&utm_content=organic&utm_campaign=NGMT_USG_JC01_GL_NRJournals 1
Innate immunological pathways in COVID-19 pathogenesis https://www.science.org/doi/10.1126/sciimmunol.abm5505?utm_campaign=SciMag&utm_source=Social&utm_medium=Twitter 1
Early non-neutralizing, afucosylated antibody responses are associated with COVID-19 severity https://www.science.org/doi/10.1126/scitranslmed.abm7853?utm_campaign=SciMag&utm_source=Social&utm_medium=Twitter 1
COVID-19 vaccine side effects: The positives about feeling bad https://www.science.org/doi/10.1126/sciimmunol.abj9256?utm_campaign=SciMag&utm_source=Social&utm_medium=Twitter 1
COVID-19 vaccine breakthrough infections https://www.science.org/doi/10.1126/science.abl8487?utm_campaign=SciMag&utm_source=Social&utm_medium=Twitter 1
B.1.1.529 escapes the majority of SARS-CoV-2 neutralizing antibodies of diverse epitopes https://www.biorxiv.org/content/10.1101/2021.12.07.470392v1 1
Immune dysregulation and immunopathology induced by SARS-CoV-2 and related coronaviruses — are we our own worst enemy? https://www.nature.com/articles/s41577-021-00656-2?utm_source=twitter&utm_medium=social&utm_content=organic&utm_campaign=NGMT_USG_JC01_GL_NRJournals 1
Robust immune responses are observed after one dose of BNT162b2 mRNA vaccine dose in SARS-CoV-2 experienced individuals https://www.science.org/doi/10.1126/scitranslmed.abi8961?utm_campaign=SciMag&utm_source=Social&utm_medium=Twitter 1
mRNA vaccines induce durable immune memory to SARS-CoV-2 and variants of concern https://www.science.org/doi/10.1126/science.abm0829?utm_campaign=SciMag&utm_source=Social&utm_medium=Twitter 1
Amilorides inhibit SARS-CoV-2 replication in vitro by targeting RNA structures https://www.science.org/doi/10.1126/sciadv.abl6096 1
Allelic variation in class I HLA determines CD8+ T cell repertoire shape and cross-reactive memory responses to SARS-CoV-2 https://www.science.org/doi/10.1126/sciimmunol.abk3070?utm_campaign=SciMag&utm_source=Social&utm_medium=Twitter 1
A broadly cross-reactive antibody neutralizes and protects against sarbecovirus challenge in mice https://www.science.org/doi/10.1126/scitranslmed.abj7125?utm_campaign=SciMag&utm_source=Social&utm_medium=Twitter 1
Scent of a vaccine https://www.science.org/doi/10.1126/science.abg9857?utm_campaign=SciMag&utm_source=Social&utm_medium=Twitter 1
A potent SARS-CoV-2 neutralising nanobody shows therapeutic efficacy in the Syrian golden hamster model of COVID-19 https://www.nature.com/articles/s41467-021-25480-z 1
High genetic barrier to SARS-CoV-2 polyclonal neutralizing antibody escape https://www.nature.com/articles/s41586-021-04005-0?utm_source=twitter&utm_medium=social&utm_content=organic&utm_campaign=NGMT_USG_JC01_GL_Nature 1
Bispecific antibodies targeting distinct regions of the spike protein potently neutralize SARS-CoV-2 variants of concern https://www.science.org/doi/10.1126/scitranslmed.abj5413?utm_campaign=SciMag&utm_source=Social&utm_medium=Twitter 1
Broad betacoronavirus neutralization by a stem helix–specific human antibody https://www.science.org/doi/10.1126/science.abj3321?utm_campaign=SciMag&utm_source=Social&utm_medium=Twitter 1
Chimeric spike mRNA vaccines protect against Sarbecovirus challenge in mice https://www.science.org/doi/10.1126/science.abi4506?utm_campaign=SciMag&utm_source=Social&utm_medium=Twitter 1
Ultrapotent antibodies against diverse and highly transmissible SARS-CoV-2 variants https://www.science.org/doi/10.1126/science.abh1766 1
Cross-reactive antibodies against human coronaviruses and the animal coronavirome suggest diagnostics for future zoonotic spillovers https://www.science.org/doi/10.1126/sciimmunol.abe9950 1
Neutralizing activity of Sputnik V vaccine sera against SARS-CoV-2 variants https://www.nature.com/articles/s41467-021-24909-9?utm_source=twitter&utm_medium=social&utm_content=organic&utm_campaign=NGMT_USG_JC01_GL_NRJournals 1
Broad sarbecovirus neutralization by a human monoclonal antibody https://www.nature.com/articles/s41586-021-03817-4?utm_source=twitter&utm_medium=social&utm_content=organic&utm_campaign=NGMT_USG_JC01_GL_Nature 1
Rapid and stable mobilization of CD8+ T cells by SARS-CoV-2 mRNA vaccine https://www.nature.com/articles/s41586-021-03841-4?utm_source=twitter&utm_medium=social&utm_content=organic&utm_campaign=NGMT_USG_JC01_GL_Nature 1
Immune responses against SARS-CoV-2 variants after heterologous and homologous ChAdOx1 nCoV-19/BNT162b2 vaccination https://www.nature.com/articles/s41591-021-01449-9?utm_source=twitter&utm_medium=social&utm_content=organic&utm_campaign=NGMT_USG_JC01_GL_NRJournals 1
Systems vaccinology of the BNT162b2 mRNA vaccine in humans https://www.nature.com/articles/s41586-021-03791-x?utm_source=twitter&utm_medium=social&utm_content=organic&utm_campaign=NGMT_USG_JC01_GL_Nature 1
A recombinant spike protein subunit vaccine confers protective immunity against SARS-CoV-2 infection and transmission in hamsters https://www.science.org/doi/10.1126/scitranslmed.abg1143 1
Masitinib is a broad coronavirus 3CL inhibitor that blocks replication of SARS-CoV-2 https://www.science.org/doi/full/10.1126/science.abg5827 1
Engineered single-domain antibodies tackle COVID variants https://www.nature.com/articles/d41586-021-01721-5?utm_source=twitter&utm_medium=social&utm_content=organic&utm_campaign=NGMT_USG_JC01_GL_Nature 1
CD8+ T cells specific for conserved coronavirus epitopes correlate with milder disease in patients with COVID-19 https://www.science.org/doi/10.1126/sciimmunol.abg5669 1
Evidence for increased breakthrough rates of SARS-CoV-2 variants of concern in BNT162b2-mRNA-vaccinated individuals https://www.nature.com/articles/s41591-021-01413-7?utm_source=twitter&utm_medium=social&utm_content=organic&utm_campaign=NGMT_USG_JC01_GL_NRJournals 1
Artificial Proteins Never Seen in the Natural World Are Becoming New COVID Vaccines and Medicines https://www.scientificamerican.com/article/artificial-proteins-never-seen-in-the-natural-world-are-becoming-new-covid-vaccines-and-medicines/ 1
Drug-induced phospholipidosis confounds drug repurposing for SARS-CoV-2 https://www.science.org/doi/full/10.1126/science.abi4708 1
Impact of vaccination on new SARS-CoV-2 infections in the United Kingdom https://www.nature.com/articles/s41591-021-01410-w?utm_source=twitter&utm_medium=social&utm_content=organic&utm_campaign=NGMT_USG_JC01_GL_NRJournals 1
Immunogenicity of Ad26.COV2.S vaccine against SARS-CoV-2 variants in humans https://www.nature.com/articles/s41586-021-03681-2?utm_source=twitter&utm_medium=social&utm_content=organic&utm_campaign=NGMT_USG_JC01_GL_Nature 1
BNT162b2 vaccine induces neutralizing antibodies and poly-specific T cells in humans https://www.nature.com/articles/s41586-021-03653-6?utm_source=twitter&utm_medium=social&utm_content=organic&utm_campaign=NGMT_USG_JC01_GL_Nature 1
SARS-CoV-2 variants of concern partially escape humoral but not T cell responses in COVID-19 convalescent donors and vaccine recipients https://www.science.org/doi/10.1126/sciimmunol.abj1750 1
Shared B cell memory to coronaviruses and other pathogens varies in human age groups and tissues https://www.science.org/doi/10.1126/science.abf6648 1
A network analysis of COVID-19 mRNA vaccine patents https://www.nature.com/articles/s41587-021-00912-9?utm_source=twitter&utm_medium=social&utm_content=organic&utm_campaign=NGMT_USG_JC01_GL_NRJournals 1
High titers and low fucosylation of early human anti–SARS-CoV-2 IgG promote inflammation by alveolar macrophages https://www.science.org/doi/10.1126/scitranslmed.abf8654 1
COVID-19–related anosmia is associated with viral persistence and inflammation in human olfactory epithelium and brain infection in hamsters https://www.science.org/doi/10.1126/scitranslmed.abf8396 1
How Pfizer Makes Its Covid-19 Vaccine https://www.nytimes.com/interactive/2021/health/pfizer-coronavirus-vaccine.html?smid=tw-share 1
A broadly neutralizing antibody protects against SARS-CoV, pre-emergent bat CoVs, and SARS-CoV-2 variants in mice https://www.biorxiv.org/content/10.1101/2021.04.27.441655v1 1
Adjuvanting a subunit COVID-19 vaccine to induce protective immunity https://www.nature.com/articles/s41586-021-03530-2 1
The SARS-CoV-2 mRNA-1273 vaccine elicits more RBD-focused neutralization, but with broader antibody binding within the RBD https://www.biorxiv.org/content/10.1101/2021.04.14.439844v1 1
The neutralizing antibody, LY-CoV555, protects against SARS-CoV-2 infection in nonhuman primates https://www.science.org/doi/10.1126/scitranslmed.abf1906 1
Immunity to SARS-CoV-2 variants of concern https://www.science.org/doi/10.1126/science.abg7404 1
Lilly COVID-19 Antibody Combination Shows 87% Risk Reduction in Phase III Trial https://www.genengnews.com/news/lilly-covid-19-antibody-combination-shows-87-risk-reduction-in-phase-iii-trial/ 1
Perspectives on therapeutic neutralizing antibodies against the Novel Coronavirus SARS-CoV-2 https://www.ijbs.com/v16p1718.htm 1
Targeting the SARS-CoV-2-spike protein: from antibodies to miniproteins and peptides https://pubs.rsc.org/en/content/articlelanding/2021/md/d0md00385a#!divAbstract 1
SARS-CoV-2 501Y.V2 escapes neutralization by South African COVID-19 donor plasma https://www.nature.com/articles/s41591-021-01285-x 1
A therapeutic neutralizing antibody targeting receptor binding domain of SARS-CoV-2 spike protein https://www.nature.com/articles/s41467-020-20602-5 1
Antibody responses to the BNT162b2 mRNA vaccine in individuals previously infected with SARS-CoV-2 https://www.nature.com/articles/s41591-021-01325-6 1
The neutralizing antibody, LY-CoV555, protects against SARS-CoV-2 infection in non-human primates https://stm.sciencemag.org/content/early/2021/04/05/scitranslmed.abf1906.full 1
Evolutionary trajectory of SARS-CoV-2 and emerging variants https://virologyj.biomedcentral.com/articles/10.1186/s12985-021-01633-w 2
Dynamic Expedition of Leading Mutations in SARS-CoV-2 Spike Glycoproteins https://www.biorxiv.org/content/10.1101/2021.12.29.474427v1 2
Mapping the proteo-genomic convergence of human diseases https://www.science.org/doi/10.1126/science.abj1541?utm_campaign=SciMag&utm_source=Social&utm_medium=Twitter 2
From Alpha to Epsilon: Consortium study illuminates surfaces of Spike most resistant to antibody escape https://www.lji.org/news-events/news/post/from-alpha-to-epsilon-consortium-study-illuminates-surfaces-of-spike-most-resistant-to-antibody-escape/ 2
Defining variant-resistant epitopes targeted by SARS-CoV-2 antibodies: A global consortium study https://www.science.org/doi/10.1126/science.abh2315#.YVFR4Ob9en8.twitter 2
The biological and clinical significance of emerging SARS-CoV-2 variants https://www.nature.com/articles/s41576-021-00408-x?utm_source=twitter&utm_medium=social&utm_content=organic&utm_campaign=NGMT_USG_JC01_GL_NRJournals 2
Evolution of a virus-like architecture and packaging mechanism in a repurposed bacterial protein https://www.science.org/doi/10.1126/science.abg2822 2
Spike mutation T403R allows bat coronavirus RaTG13 to use human ACE2 https://www.biorxiv.org/content/10.1101/2021.05.31.446386v1 2
Evolution of antibody immunity to SARS-CoV-2 https://www.nature.com/articles/s41586-021-03207-w 2
Evolution of antibody immunity to SARS-CoV2 https://www.nature.com/articles/s41586-021-03207-w 2
Innovative X-ray imaging shows COVID-19 can cause vascular damage to the heart https://medicalxpress.com/news/2021-12-x-ray-imaging-covid-vascular-heart.html 3
Bacteriophage self-counting in the presence of viral replication https://www.pnas.org/content/118/51/e2104163118 3
Structural analysis of receptor binding domain mutations in SARS-CoV-2 variants of concern that modulate ACE2 and antibody binding https://www.cell.com/cell-reports/fulltext/S2211-1247(21)01652-1#.YbBFgwgnRMI.twitter 3
Structural basis for continued antibody evasion by the SARS-CoV-2 receptor binding domain https://www.science.org/doi/10.1126/science.abl6251?utm_campaign=SciMag&utm_source=Social&utm_medium=Twitter 3
Ensemble cryo-electron microscopy reveals conformational states of the nsp13 helicase in the SARS-CoV-2 helicase replication-transcription complex https://www.biorxiv.org/content/10.1101/2021.11.10.468168v1 3
Membrane fusion and immune evasion by the spike protein of SARS-CoV-2 Delta variant https://www.science.org/doi/10.1126/science.abl9463?utm_campaign=SciMag&utm_source=Social&utm_medium=Twitter 3
Structural basis of mismatch recognition by a SARS-CoV-2 proofreading enzyme https://www.science.org/doi/full/10.1126/science.abi9310?utm_campaign=SciMag&utm_source=Social&utm_medium=Twitter 3
Water-Triggered, Irreversible Conformational Change of SARS-CoV-2 Main Protease on Passing from the Solid State to Aqueous Solution https://pubs.acs.org/doi/10.1021/jacs.1c05301 3
A glycan gate controls opening of the SARS-CoV-2 spike protein https://www.nature.com/articles/s41557-021-00758-3?utm_source=twitter&utm_medium=social&utm_content=organic&utm_campaign=NGMT_USG_JC01_GL_NRJournals 3
The antiandrogen enzalutamide downregulates TMPRSS2 and reduces cellular entry of SARS-CoV-2 in human lung cells https://www.nature.com/articles/s41467-021-24342-y?utm_source=twitter&utm_medium=social&utm_content=organic&utm_campaign=NGMT_USG_JC01_GL_NRJournals 3
Identification of SARS-CoV-2–induced pathways reveals drug repurposing strategies https://www.science.org/doi/10.1126/sciadv.abh3032 3
Mn2+ coordinates Cap-0-RNA to align substrates for efficient 2′-O-methyl transfer by SARS-CoV-2 nsp16 https://www.science.org/doi/10.1126/scisignal.abh2071 3
A potential interaction between the SARS-CoV-2 spike protein and nicotinic acetylcholine receptors https://www.cell.com/biophysj/fulltext/S0006-3495(21)00146-6 3
Structural basis of ribosomal frameshifting during translation of the SARS-CoV-2 RNA genome https://www.science.org/doi/10.1126/science.abf3546 3
Protective efficacy of Ad26.COV2.S against SARS-CoV-2 B.1.351 in macaques https://www.nature.com/articles/s41586-021-03732-8?utm_source=twitter&utm_medium=social&utm_content=organic&utm_campaign=NGMT_USG_JC01_GL_Nature 3
Cryo-EM structure of SARS-CoV-2 ORF3a in lipid nanodiscs https://www.nature.com/articles/s41594-021-00619-0?utm_source=twitter&utm_medium=social&utm_content=organic&utm_campaign=NGMT_USG_JC01_GL_NRJournals 3
A multi-omics investigation of the composition and function of extracellular vesicles along the temporal trajectory of COVID-19 https://www.nature.com/articles/s42255-021-00425-4?utm_source=twitter&utm_medium=social&utm_content=organic&utm_campaign=NGMT_USG_JC01_GL_NRJournals 3
Improving SARS-CoV-2 structures: Peer review by early coordinate release https://www.cell.com/biophysj/fulltext/S0006-3495(21)00046-1 3
Cooperative multivalent receptor binding promotes exposure of the SARS-CoV-2 fusion machinery core https://www.biorxiv.org/content/10.1101/2021.05.24.445443v2 3
Revealing the spike's real shape https://www.science.org/content/blog-post/revealing-spike-s-real-shape 3
SARS-CoV-2 gene content and COVID-19 mutation impact by comparing 44 Sarbecovirus genomes https://www.nature.com/articles/s41467-021-22905-7?utm_source=twitter&utm_medium=social&utm_content=organic&utm_campaign=NGMT_USG_JC01_GL_NRJournals 3
X-ray screening identifies active site and allosteric inhibitors of SARS-CoV-2 main protease https://www.science.org/doi/10.1126/science.abf7945 3
Viral genomes reveal patterns of the SARS-CoV-2 outbreak in Washington State https://www.science.org/doi/10.1126/scitranslmed.abf0202 3
COVID-19 tissue atlases reveal SARS-CoV-2 pathology and cellular targets https://www.nature.com/articles/s41586-021-03570-8?utm_source=twitter&utm_medium=social&utm_content=organic&utm_campaign=NGMT_USG_JC01_GL_Nature 3
Structural biology in the time of COVID-19: perspectives on methods and milestones https://journals.iucr.org/m/issues/2021/03/00/mf5052/index.html 3
Massively Multiplexed Affinity Characterization of Therapeutic Antibodies Against SARS-CoV-2 Variants https://www.biorxiv.org/content/10.1101/2021.04.27.440939v1 3
Fine-tuning the Spike: Role of the nature and topology of the glycan shield in the structure and dynamics of the SARS-CoV-2 S https://www.biorxiv.org/content/10.1101/2021.04.01.438036v2 3
Identification of lectin receptors for conserved SARS-CoV-2 glycosylation sites https://www.biorxiv.org/content/10.1101/2021.04.01.438087v1 3
Electrostatic interactions between the SARS-CoV-2 virus and a charged electret fibre https://pubs.rsc.org/en/content/articlelanding/2021/sm/d1sm00232e 3
How SARS-CoV-2’s Sugar-Coated Shield Helps Activate the Virus https://www.biophysics.org/news-room/how-sars-cov-2s-sugar-coated-shield-helps-activate-the-virus 3
Structural basis for backtracking by the SARS-CoV-2 replication-transcription complex https://www.biorxiv.org/content/10.1101/2021.03.13.435256v1 3
The emerging plasticity of SARS-CoV-2 https://science.sciencemag.org/content/371/6536/1306.full 3
Prospective mapping of viral mutations that escape antibodies used to treat COVID-19 https://science.sciencemag.org/content/371/6531/850 3
Identification of lection receptor for conserved SARS-C0V-2 glycosilation https://www.biorxiv.org/content/10.1101/2021.04.01.438087v1 3
Computational epitope map of SARS-CoV-2 spike protein https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1008790 3
Activity of convalescent and vaccine serum against SARS-CoV-2 Omicron https://www.nature.com/articles/s41586-022-04399-5#Echobox=1641674359 4
Structural basis of Omicron neutralization by affinity-matured public antibodies https://www.biorxiv.org/content/10.1101/2022.01.03.474825v1 4
The hyper-transmissible SARS-CoV-2 Omicron variant exhibits significant antigenic change, vaccine escape and a switch in cell entry mechanism https://www.gla.ac.uk/media/Media_829360_smxx.pdf 4
Exponential growth, high prevalence of SARS-CoV-2, and vaccine effectiveness associated with the Delta variant https://www.science.org/doi/10.1126/science.abl9551?utm_campaign=SciMag&utm_source=Social&utm_medium=Twitter 4
CryoEM structure of Omicron (B.1.1.529) variant spike protein in complex with human ACE2 reveals new salt bridges formed by mutated residues R498 and R493 in the RBD and residues D38 and E35, respectively, in ACE2. https://twitter.com/cryoem_UBC/status/1471390036851511299 4
SARS-CoV-2 B.1.1.529 variant (Omicron) evades neutralization by sera from vaccinated and convalescent individuals https://www.medrxiv.org/content/10.1101/2021.12.08.21267491v1 4
Modelling the potential consequences of the Omicron SARS-CoV-2 variant in England https://cmmid.github.io/topics/covid19/omicron-england.html 4
Omicron and Delta Variant of SARS-CoV-2: A Comparative Computational Study of Spike protein https://www.biorxiv.org/content/10.1101/2021.12.02.470946v1 4
Where did ‘weird’ Omicron come from? https://www.science.org/content/article/where-did-weird-omicron-come?utm_campaign=NewsfromScience&utm_source=Social&utm_medium=Twitter 4
The Omicron SARSCoV2 mutations in each gene and the drugs, candidates, & vaccines that target them. The 3CL protease and RNA polymerase have only 1 mutation each (unlike spike, which has >30); the drug candidates targeting them might be more likely to retain efficacy. https://twitter.com/davidrliu/status/1464714206150807559/photo/1 4
The mutation map of the 5 Variants of Concern https://covariants.org/shared-mutations 4
Classification of Omicron (B.1.1.529): SARS-CoV-2 Variant of Concern https://www.who.int/news/item/26-11-2021-classification-of-omicron-(b.1.1.529)-sars-cov-2-variant-of-concern 4
Molecular basis of immune evasion by the Delta and Kappa SARS-CoV-2 variants https://www.science.org/doi/10.1126/science.abl8506?utm_campaign=SciMag&utm_source=Social&utm_medium=Twitter 4
The mutation that helps Delta spread like wildfire https://www.nature.com/articles/d41586-021-02275-2?utm_source=twitter&utm_medium=social&utm_content=organic&utm_campaign=NGMT_USG_JC01_GL_Nature 4
SARS-CoV-2 immune evasion by the B.1.427/B.1.429 variant of concern https://www.science.org/doi/10.1126/science.abi7994 4
Spatiotemporal invasion dynamics of SARS-CoV-2 lineage B.1.1.7 emergence https://www.science.org/doi/full/10.1126/science.abj0113 4
Reduced sensitivity of SARS-CoV-2 variant Delta to antibody neutralization https://www.nature.com/articles/s41586-021-03777-9?utm_source=twitter&utm_medium=social&utm_content=organic&utm_campaign=NGMT_USG_JC01_GL_Nature 4
Fe-S cofactors in the SARS-CoV-2 RNA-dependent RNA polymerase are potential antiviral targets https://www.science.org/doi/10.1126/science.abi5224 4
Coronavirus variants are spreading in India — what scientists know so far https://www.nature.com/articles/d41586-021-01274-7?utm_source=twitter&utm_medium=social&utm_content=organic&utm_campaign=NGMT_USG_JC01_GL_Nature 4
Genomics and epidemiology of the P.1 SARS-CoV-2 lineage in Manaus, Brazil https://www.science.org/doi/10.1126/science.abh2644 4
A novel variant of interest of SARS-CoV-2 with multiple spike mutations detected through travel surveillance in Africa https://www.krisp.org.za/publications.php?pubid=330 4
Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7 https://www.nature.com/articles/s41586-021-03398-2 4
Development of potency, breadth and resilience to viral escape mutation in SARS-CoV-2 neutralizing anitbodies https://www.biorxiv.org/content/10.1101/2021.03.07.434227v1 4
SARS-CoV-2 Variants | UK+ South African + Brazil Variants https://www.youtube.com/watch?v=OYgVmOLF2mY 4
Summary of Clinical Data on New Coronavirus Variant, Suggests Humans can still win the Long war [Chinese] https://m.weibo.cn/status/4647414625212687?sourceType=weixin&from=10AC195010&wm=4260_0001&featurecode=newtitle 4
Delta Variant US confirmed rate doubles in 7 days! [Chinese] https://mp.weixin.qq.com/s/8lRnwUUz_3dV7QMtfg2s4w 4
Delta variant isn’t over, Delta+ variant strikes again [Chinese] https://m.weibo.cn/status/4650675290506335?sourceType=weixin&from=10B6195010&wm=2468_1001&featurecode=newtitle 4
Delta coronavirus variant: scientists brace for impact https://www.nature.com/articles/d41586-021-01696-3?utm_source=twt_nat&utm_medium=social&utm_campaign=nature 4
Menacing: What is the new crown Delta mutant, and how can we respond? [Chinese] https://mp.weixin.qq.com/s/g9gPLEN6R02F49eRGGSuAA 4
Race to understand Sars-CoV-2 variants amid fears virus might evade vaccines https://www.chemistryworld.com/news/race-to-understand-sars-cov-2-variants-amid-fears-virus-might-evade-vaccines/4013891.article 4