Difference between revisions of "deLemus"

From
Jump to navigation Jump to search
(Replaced content with "=='''<big>Summary</big>'''== <big>The outbreak of COVID-19 caused by SARS-CoV-2 has become a global health crisis. The RNA genome of the virus allows rapid mutation and...")
Tags: Visual edit Replaced
Line 22: Line 22:
 
=='''<big>Variant Distribution</big>'''==
 
=='''<big>Variant Distribution</big>'''==
 
TEMP
 
TEMP
 
=='''<big>About Us</big>'''==
 
TEMP
 
 
== '''<big>SARS-CoV-2 Articles Collection</big>''' ==
 
 
{| class="wikitable sortable"
 
|+
 
!No
 
!Name
 
!Link
 
!Code
 
|-
 
|1
 
|The GISAID Database
 
|https://www.gisaid.org/
 
|0
 
|-
 
|4
 
|Nexstrain SARS-CoV-2 resources
 
|https://nextstrain.org/sars-cov-2/
 
|0
 
|-
 
|14
 
|A novel  phosphorylation site in SARS-CoV-2 nucleocapsid regulates its RNA-binding  capacity and phase separation in host cells
 
|https://academic.oup.com/jmcb/advance-article/doi/10.1093/jmcb/mjac003/6510820?login=false#/
 
|0
 
|-
 
|34
 
|Airborne transmission of  respiratory viruses
 
|https://www.science.org/doi/10.1126/science.abd9149/
 
|0
 
|-
 
|36
 
|SARS-CoV-2 infection in  free-ranging white-tailed deer
 
|https://www.nature.com/articles/s41586-021-04353-x?utm_source=twitter&utm_medium=social&utm_content=organic&utm_campaign=NGMT_USG_JC01_GL_Nature/
 
|0
 
|-
 
|41
 
|Do childhood colds help the  body respond to COVID?
 
|https://www.nature.com/articles/d41586-021-03087-0?utm_source=twt_nat&utm_medium=social&utm_campaign=nature/
 
|0
 
|-
 
|42
 
|Identification of driver genes  for critical forms of COVID-19 in a deeply phenotyped young patient cohort
 
|https://www.science.org/doi/10.1126/scitranslmed.abj7521?utm_campaign=SciMag&utm_source=Social&utm_medium=Twitter/
 
|0
 
|-
 
|43
 
|Immune memory from SARS-CoV-2  infection in hamsters provides variant-independent protection but still  allows virus transmission
 
|https://www.science.org/doi/10.1126/sciimmunol.abm3131?utm_campaign=SciMag&utm_source=Social&utm_medium=Twitter/
 
|0
 
|-
 
|47
 
|Naive human B cells engage the  receptor binding domain of SARS-CoV-2, variants of concern, and related  sarbecoviruses
 
|https://www.science.org/doi/10.1126/sciimmunol.abl5842?utm_campaign=SciMag&utm_source=Social&utm_medium=Twitter/
 
|0
 
|-
 
|59
 
|Correlates of protection  against symptomatic and asymptomatic SARS-CoV-2 infection
 
|https://www.nature.com/articles/s41591-021-01540-1?utm_source=twitter&utm_medium=social&utm_content=organic&utm_campaign=NGMT_USG_JC01_GL_NRJournals/
 
|0
 
|-
 
|65
 
|Immune correlates of  protection by mRNA-1273 vaccine against SARS-CoV-2 in nonhuman primates
 
|https://www.science.org/doi/full/10.1126/science.abj0299?utm_campaign=SciMag&utm_source=Social&utm_medium=Twitter/
 
|0
 
|-
 
|66
 
|How do vaccinated people  spread Delta? What the science says
 
|https://www.nature.com/articles/d41586-021-02187-1?utm_source=twt_nat&utm_medium=social&utm_campaign=nature/
 
|0
 
|-
 
|72
 
|Boosting stem cell immunity to  viruses
 
|https://www.science.org/doi/10.1126/science.abj5673/
 
|0
 
|-
 
|73
 
|Targeting aging cells improves  survival
 
|https://www.science.org/doi/10.1126/science.abi4474/
 
|0
 
|-
 
|74
 
|After the pandemic:  perspectives on the future trajectory of COVID-19
 
|https://www.nature.com/articles/s41586-021-03792-w?utm_source=twitter&utm_medium=social&utm_content=organic&utm_campaign=NGMT_USG_JC01_GL_Nature/
 
|2
 
|-
 
|87
 
|Hybrid immunity
 
|https://www.science.org/doi/10.1126/science.abj2258/
 
|0
 
|-
 
|93
 
|How your DNA may affect  whether you get COVID-19 or become gravely ill
 
|https://www.sciencenews.org/article/coronavirus-covid-how-dna-genetic-risk-infection-severe-illness/
 
|0
 
|-
 
|95
 
|Naturally enhanced  neutralizing breadth against SARS-CoV-2 one year after infection
 
|https://www.nature.com/articles/s41586-021-03696-9?utm_source=twitter&utm_medium=social&utm_content=organic&utm_campaign=NGMT_USG_JC01_GL_Nature/
 
|0
 
|-
 
|96
 
|How were the first treatments  for COVID identified?
 
|https://www.compoundchem.com/2021/06/16/recovery-trial//
 
|0
 
|-
 
|100
 
|Antibody sugars are  bittersweet
 
|https://www.science.org/doi/10.1126/science.abj0435/
 
|0
 
|-
 
|101
 
|CRISPR diagnostics
 
|https://www.science.org/doi/10.1126/science.abi9335/
 
|0
 
|-
 
|104
 
|Complement control for  COVID-19
 
|https://www.science.org/doi/10.1126/sciimmunol.abj1014/
 
|0
 
|-
 
|109
 
|Estimating infectiousness  throughout SARS-CoV-2 infection course
 
|https://www.science.org/doi/10.1126/science.abi5273/
 
|0
 
|-
 
|115
 
|Face masks effectively limit  the probability of SARS-CoV-2 transmission
 
|https://www.science.org/doi/10.1126/science.abg6296/
 
|0
 
|-
 
|126
 
|How COVID broke the evidence  pipeline
 
|https://www.nature.com/articles/d41586-021-01246-x?utm_source=twitter&utm_medium=social&utm_content=organic&utm_campaign=NGMT_USG_JC01_GL_Nature/
 
|0
 
|-
 
|131
 
|It’s time to consider a patent  reprieve for COVID vaccines
 
|https://www.nature.com/articles/d41586-021-00863-w?utm_source=twitter&utm_medium=social&utm_content=organic&utm_campaign=NGMT_USG_JC01_GL_Nature/
 
|0
 
|-
 
|132
 
|SARS-CoV-2 transmission  without symptoms
 
|https://www.science.org/doi/10.1126/science.abf9569/
 
|0
 
|-
 
|135
 
|Five reasons why COVID herd  immunity is probably impossible
 
|https://www.nature.com/articles/d41586-021-00728-2?utm_source=twitter&utm_medium=social&utm_content=organic&utm_campaign=NGMT_USG_JC01_GL_Nature/
 
|0
 
|-
 
|137
 
|Rare COVID reactions might  hold key to variant-proof vaccines
 
|https://www.nature.com/articles/d41586-021-00722-8?utm_source=twitter&utm_medium=social&utm_content=organic&utm_campaign=NGMT_USG_JC01_GL_Nature/
 
|0
 
|-
 
|138
 
|Increased mortality in  community-tested cases of SARS-CoV-2 lineage B.1.1.7
 
|https://www.nature.com/articles/s41586-021-03426-1?utm_source=twitter&utm_medium=social&utm_content=organic&utm_campaign=NGMT_USG_JC01_GL_Nature/
 
|0
 
|-
 
|139
 
|Cell Press Coronavirus  Resource Hub
 
|https://www.cell.com/COVID-19/
 
|0
 
|-
 
|140
 
|Nexstrain SARS-CoV-2 resources
 
|https://nextstrain.org/sars-cov-2//
 
|0
 
|-
 
|141
 
|CoVariants
 
|https://covariants.org//
 
|0
 
|-
 
|142
 
|The GISAID Database
 
|https://www.gisaid.org//
 
|0
 
|-
 
|143
 
|UniProt (Data Retrieving)
 
|https://www.uniprot.org/uploadlists//
 
|0
 
|-
 
|161
 
|Multiple Sequence Alignment
 
|https://www.ebi.ac.uk/Tools/msa/clustalo//
 
|0
 
|-
 
|6
 
|InterPro (List of Protein  Family)
 
|https://www.ebi.ac.uk/interpro//
 
|0
 
|-
 
|7
 
|More evidence suggests  COVID-19 was in the US by Christmas 2019
 
|https://apnews.com/article/more-evidence-covid-in-US-by-Christmas-2019-11346afc5e18eee81ebcf35d9e6caee2/
 
|0
 
|-
 
|9
 
|A COVID Vaccine for All
 
|https://www.scientificamerican.com/article/a-covid-vaccine-for-all//
 
|1
 
|-
 
|10
 
|Single-cell immunology of  SARS-CoV-2 infection
 
|https://www.nature.com/articles/s41587-021-01131-y?utm_source=twitter&utm_medium=social&utm_content=organic&utm_campaign=NGMT_USG_JC01_GL_NRJournals/
 
|1
 
|-
 
|11
 
|Innate immunological pathways  in COVID-19 pathogenesis
 
|https://www.science.org/doi/10.1126/sciimmunol.abm5505?utm_campaign=SciMag&utm_source=Social&utm_medium=Twitter/
 
|1
 
|-
 
|15
 
|Early non-neutralizing,  afucosylated antibody responses are associated with COVID-19 severity
 
|https://www.science.org/doi/10.1126/scitranslmed.abm7853?utm_campaign=SciMag&utm_source=Social&utm_medium=Twitter/
 
|1
 
|-
 
|22
 
|COVID-19 vaccine side effects:  The positives about feeling bad
 
|https://www.science.org/doi/10.1126/sciimmunol.abj9256?utm_campaign=SciMag&utm_source=Social&utm_medium=Twitter/
 
|1
 
|-
 
|24
 
|COVID-19 vaccine breakthrough  infections
 
|https://www.science.org/doi/10.1126/science.abl8487?utm_campaign=SciMag&utm_source=Social&utm_medium=Twitter/
 
|1
 
|-
 
|25
 
|B.1.1.529 escapes the majority  of SARS-CoV-2 neutralizing antibodies of diverse epitopes
 
|https://www.biorxiv.org/content/10.1101/2021.12.07.470392v1/
 
|1
 
|-
 
|26
 
|Immune dysregulation and  immunopathology induced by SARS-CoV-2 and related coronaviruses — are we our  own worst enemy?
 
|https://www.nature.com/articles/s41577-021-00656-2?utm_source=twitter&utm_medium=social&utm_content=organic&utm_campaign=NGMT_USG_JC01_GL_NRJournals/
 
|1
 
|-
 
|32
 
|Robust immune responses are  observed after one dose of BNT162b2 mRNA vaccine dose in SARS-CoV-2  experienced individuals
 
|https://www.science.org/doi/10.1126/scitranslmed.abi8961?utm_campaign=SciMag&utm_source=Social&utm_medium=Twitter/
 
|1
 
|-
 
|33
 
|mRNA vaccines induce durable  immune memory to SARS-CoV-2 and variants of concern
 
|https://www.science.org/doi/10.1126/science.abm0829?utm_campaign=SciMag&utm_source=Social&utm_medium=Twitter/
 
|1
 
|-
 
|39
 
|Amilorides inhibit SARS-CoV-2  replication in vitro by targeting RNA structures
 
|https://www.science.org/doi/10.1126/sciadv.abl6096/
 
|1
 
|-
 
|44
 
|Allelic variation in class I  HLA determines CD8+ T cell repertoire shape and cross-reactive memory  responses to SARS-CoV-2
 
|https://www.science.org/doi/10.1126/sciimmunol.abk3070?utm_campaign=SciMag&utm_source=Social&utm_medium=Twitter/
 
|1
 
|-
 
|48
 
|A broadly cross-reactive  antibody neutralizes and protects against sarbecovirus challenge in mice
 
|https://www.science.org/doi/10.1126/scitranslmed.abj7125?utm_campaign=SciMag&utm_source=Social&utm_medium=Twitter/
 
|1
 
|-
 
|50
 
|Scent of a vaccine
 
|https://www.science.org/doi/10.1126/science.abg9857?utm_campaign=SciMag&utm_source=Social&utm_medium=Twitter/
 
|1
 
|-
 
|52
 
|A potent SARS-CoV-2  neutralising nanobody shows therapeutic efficacy in the Syrian golden hamster  model of COVID-19
 
|https://www.nature.com/articles/s41467-021-25480-z/
 
|1
 
|-
 
|53
 
|High genetic barrier to  SARS-CoV-2 polyclonal neutralizing antibody escape
 
|https://www.nature.com/articles/s41586-021-04005-0?utm_source=twitter&utm_medium=social&utm_content=organic&utm_campaign=NGMT_USG_JC01_GL_Nature/
 
|1
 
|-
 
|54
 
|Bispecific antibodies  targeting distinct regions of the spike protein potently neutralize  SARS-CoV-2 variants of concern
 
|https://www.science.org/doi/10.1126/scitranslmed.abj5413?utm_campaign=SciMag&utm_source=Social&utm_medium=Twitter/
 
|1
 
|-
 
|58
 
|Broad betacoronavirus  neutralization by a stem helix–specific human antibody
 
|https://www.science.org/doi/10.1126/science.abj3321?utm_campaign=SciMag&utm_source=Social&utm_medium=Twitter/
 
|1
 
|-
 
|61
 
|Chimeric spike mRNA vaccines  protect against Sarbecovirus challenge in mice
 
|https://www.science.org/doi/10.1126/science.abi4506?utm_campaign=SciMag&utm_source=Social&utm_medium=Twitter/
 
|1
 
|-
 
|62
 
|Ultrapotent antibodies against  diverse and highly transmissible SARS-CoV-2 variants
 
|https://www.science.org/doi/10.1126/science.abh1766/
 
|1
 
|-
 
|63
 
|Cross-reactive antibodies  against human coronaviruses and the animal coronavirome suggest diagnostics  for future zoonotic spillovers
 
|https://www.science.org/doi/10.1126/sciimmunol.abe9950/
 
|1
 
|-
 
|64
 
|Neutralizing activity of  Sputnik V vaccine sera against SARS-CoV-2 variants
 
|https://www.nature.com/articles/s41467-021-24909-9?utm_source=twitter&utm_medium=social&utm_content=organic&utm_campaign=NGMT_USG_JC01_GL_NRJournals/
 
|1
 
|-
 
|67
 
|Broad sarbecovirus  neutralization by a human monoclonal antibody
 
|https://www.nature.com/articles/s41586-021-03817-4?utm_source=twitter&utm_medium=social&utm_content=organic&utm_campaign=NGMT_USG_JC01_GL_Nature/
 
|1
 
|-
 
|69
 
|Rapid and stable mobilization  of CD8+ T cells by SARS-CoV-2 mRNA vaccine
 
|https://www.nature.com/articles/s41586-021-03841-4?utm_source=twitter&utm_medium=social&utm_content=organic&utm_campaign=NGMT_USG_JC01_GL_Nature/
 
|1
 
|-
 
|70
 
|Immune responses against  SARS-CoV-2 variants after heterologous and homologous ChAdOx1  nCoV-19/BNT162b2 vaccination
 
|https://www.nature.com/articles/s41591-021-01449-9?utm_source=twitter&utm_medium=social&utm_content=organic&utm_campaign=NGMT_USG_JC01_GL_NRJournals/
 
|1
 
|-
 
|71
 
|Systems vaccinology of the  BNT162b2 mRNA vaccine in humans
 
|https://www.nature.com/articles/s41586-021-03791-x?utm_source=twitter&utm_medium=social&utm_content=organic&utm_campaign=NGMT_USG_JC01_GL_Nature/
 
|1
 
|-
 
|75
 
|A recombinant spike protein  subunit vaccine confers protective immunity against SARS-CoV-2 infection and  transmission in hamsters
 
|https://www.science.org/doi/10.1126/scitranslmed.abg1143/
 
|1
 
|-
 
|76
 
|Masitinib is a broad  coronavirus 3CL inhibitor that blocks replication of SARS-CoV-2
 
|https://www.science.org/doi/full/10.1126/science.abg5827/
 
|1
 
|-
 
|83
 
|Engineered single-domain  antibodies tackle COVID variants
 
|https://www.nature.com/articles/d41586-021-01721-5?utm_source=twitter&utm_medium=social&utm_content=organic&utm_campaign=NGMT_USG_JC01_GL_Nature/
 
|1
 
|-
 
|84
 
|CD8+ T cells specific for  conserved coronavirus epitopes correlate with milder disease in patients with  COVID-19
 
|https://www.science.org/doi/10.1126/sciimmunol.abg5669/
 
|1
 
|-
 
|89
 
|Evidence for increased  breakthrough rates of SARS-CoV-2 variants of concern in  BNT162b2-mRNA-vaccinated individuals
 
|https://www.nature.com/articles/s41591-021-01413-7?utm_source=twitter&utm_medium=social&utm_content=organic&utm_campaign=NGMT_USG_JC01_GL_NRJournals/
 
|1
 
|-
 
|92
 
|Artificial Proteins Never Seen  in the Natural World Are Becoming New COVID Vaccines and Medicines
 
|https://www.scientificamerican.com/article/artificial-proteins-never-seen-in-the-natural-world-are-becoming-new-covid-vaccines-and-medicines//
 
|1
 
|-
 
|94
 
|Drug-induced phospholipidosis  confounds drug repurposing for SARS-CoV-2
 
|https://www.science.org/doi/full/10.1126/science.abi4708/
 
|1
 
|-
 
|98
 
|Impact of vaccination on new  SARS-CoV-2 infections in the United Kingdom
 
|https://www.nature.com/articles/s41591-021-01410-w?utm_source=twitter&utm_medium=social&utm_content=organic&utm_campaign=NGMT_USG_JC01_GL_NRJournals/
 
|1
 
|-
 
|103
 
|Immunogenicity of Ad26.COV2.S  vaccine against SARS-CoV-2 variants in humans
 
|https://www.nature.com/articles/s41586-021-03681-2?utm_source=twitter&utm_medium=social&utm_content=organic&utm_campaign=NGMT_USG_JC01_GL_Nature/
 
|1
 
|-
 
|106
 
|BNT162b2 vaccine induces  neutralizing antibodies and poly-specific T cells in humans
 
|https://www.nature.com/articles/s41586-021-03653-6?utm_source=twitter&utm_medium=social&utm_content=organic&utm_campaign=NGMT_USG_JC01_GL_Nature/
 
|1
 
|-
 
|108
 
|SARS-CoV-2 variants of concern  partially escape humoral but not T cell responses in COVID-19 convalescent  donors and vaccine recipients
 
|https://www.science.org/doi/10.1126/sciimmunol.abj1750/
 
|1
 
|-
 
|112
 
|Shared B cell memory to  coronaviruses and other pathogens varies in human age groups and tissues
 
|https://www.science.org/doi/10.1126/science.abf6648/
 
|1
 
|-
 
|114
 
|A network analysis of COVID-19  mRNA vaccine patents
 
|https://www.nature.com/articles/s41587-021-00912-9?utm_source=twitter&utm_medium=social&utm_content=organic&utm_campaign=NGMT_USG_JC01_GL_NRJournals/
 
|1
 
|-
 
|117
 
|High titers and low  fucosylation of early human anti–SARS-CoV-2 IgG promote inflammation by  alveolar macrophages
 
|https://www.science.org/doi/10.1126/scitranslmed.abf8654/
 
|1
 
|-
 
|119
 
|COVID-19–related anosmia is  associated with viral persistence and inflammation in human olfactory  epithelium and brain infection in hamsters
 
|https://www.science.org/doi/10.1126/scitranslmed.abf8396/
 
|1
 
|-
 
|121
 
|How Pfizer Makes Its Covid-19  Vaccine
 
|https://www.nytimes.com/interactive/2021/health/pfizer-coronavirus-vaccine.html?smid=tw-share/
 
|1
 
|-
 
|123
 
|A broadly neutralizing  antibody protects against SARS-CoV, pre-emergent bat CoVs, and SARS-CoV-2  variants in mice
 
|https://www.biorxiv.org/content/10.1101/2021.04.27.441655v1/
 
|1
 
|-
 
|124
 
|Adjuvanting a subunit COVID-19  vaccine to induce protective immunity
 
|https://www.nature.com/articles/s41586-021-03530-2/
 
|1
 
|-
 
|129
 
|The SARS-CoV-2 mRNA-1273  vaccine elicits more RBD-focused neutralization, but with broader antibody  binding within the RBD
 
|https://www.biorxiv.org/content/10.1101/2021.04.14.439844v1/
 
|1
 
|-
 
|136
 
|The neutralizing antibody,  LY-CoV555, protects against SARS-CoV-2 infection in nonhuman primates
 
|https://www.science.org/doi/10.1126/scitranslmed.abf1906/
 
|1
 
|-
 
|145
 
|Immunity to SARS-CoV-2  variants of concern
 
|https://www.science.org/doi/10.1126/science.abg7404/
 
|1
 
|-
 
|146
 
|Lilly COVID-19 Antibody  Combination Shows 87% Risk Reduction in Phase III Trial
 
|https://www.genengnews.com/news/lilly-covid-19-antibody-combination-shows-87-risk-reduction-in-phase-iii-trial//
 
|1
 
|-
 
|148
 
|Perspectives on therapeutic  neutralizing antibodies against the Novel Coronavirus SARS-CoV-2
 
|https://www.ijbs.com/v16p1718.htm/
 
|1
 
|-
 
|149
 
|Targeting the SARS-CoV-2-spike  protein: from antibodies to miniproteins and peptides
 
|https://pubs.rsc.org/en/content/articlelanding/2021/md/d0md00385a#!divAbstract/
 
|1
 
|-
 
|151
 
|SARS-CoV-2 501Y.V2 escapes  neutralization by South African COVID-19 donor plasma
 
|https://www.nature.com/articles/s41591-021-01285-x/
 
|1
 
|-
 
|153
 
|A therapeutic neutralizing  antibody targeting receptor binding domain of SARS-CoV-2 spike protein
 
|https://www.nature.com/articles/s41467-020-20602-5/
 
|1
 
|-
 
|2
 
|Antibody responses to the  BNT162b2 mRNA vaccine in individuals previously infected with SARS-CoV-2
 
|https://www.nature.com/articles/s41591-021-01325-6/
 
|1
 
|-
 
|12
 
|The neutralizing antibody,  LY-CoV555, protects against SARS-CoV-2 infection in non-human primates
 
|https://stm.sciencemag.org/content/early/2021/04/05/scitranslmed.abf1906.full/
 
|1
 
|-
 
|35
 
|Evolutionary trajectory of  SARS-CoV-2 and emerging variants
 
|https://virologyj.biomedcentral.com/articles/10.1186/s12985-021-01633-w/
 
|2
 
|-
 
|45
 
|Dynamic Expedition of Leading  Mutations in SARS-CoV-2 Spike Glycoproteins
 
|https://www.biorxiv.org/content/10.1101/2021.12.29.474427v1/
 
|2
 
|-
 
|46
 
|Mapping the proteo-genomic  convergence of human diseases
 
|https://www.science.org/doi/10.1126/science.abj1541?utm_campaign=SciMag&utm_source=Social&utm_medium=Twitter/
 
|2
 
|-
 
|49
 
|From Alpha to Epsilon:  Consortium study illuminates surfaces of Spike most resistant to antibody  escape
 
|https://www.lji.org/news-events/news/post/from-alpha-to-epsilon-consortium-study-illuminates-surfaces-of-spike-most-resistant-to-antibody-escape//
 
|2
 
|-
 
|91
 
|Defining variant-resistant  epitopes targeted by SARS-CoV-2 antibodies: A global consortium study
 
|https://www.science.org/doi/10.1126/science.abh2315#.YVFR4Ob9en8.twitter/
 
|2
 
|-
 
|99
 
|The biological and clinical  significance of emerging SARS-CoV-2 variants
 
|https://www.nature.com/articles/s41576-021-00408-x?utm_source=twitter&utm_medium=social&utm_content=organic&utm_campaign=NGMT_USG_JC01_GL_NRJournals/
 
|2
 
|-
 
|152
 
|Evolution of a virus-like  architecture and packaging mechanism in a repurposed bacterial protein
 
|https://www.science.org/doi/10.1126/science.abg2822/
 
|2
 
|-
 
|156
 
|Spike mutation T403R allows  bat coronavirus RaTG13 to use human ACE2
 
|https://www.biorxiv.org/content/10.1101/2021.05.31.446386v1/
 
|2
 
|-
 
|16
 
|Evolution of antibody immunity  to SARS-CoV-2
 
|https://www.nature.com/articles/s41586-021-03207-w/
 
|2
 
|-
 
|17
 
|Evolution of antibody immunity  to SARS-CoV2
 
|https://www.nature.com/articles/s41586-021-03207-w/
 
|2
 
|-
 
|19
 
|Innovative X-ray imaging shows  COVID-19 can cause vascular damage to the heart
 
|https://medicalxpress.com/news/2021-12-x-ray-imaging-covid-vascular-heart.html/
 
|3
 
|-
 
|21
 
|Bacteriophage self-counting in  the presence of viral replication
 
|https://www.pnas.org/content/118/51/e2104163118/
 
|3
 
|-
 
|37
 
|Structural analysis of  receptor binding domain mutations in SARS-CoV-2 variants of concern that  modulate ACE2 and antibody binding
 
|https://www.cell.com/cell-reports/fulltext/S2211-1247(21)01652-1#.YbBFgwgnRMI.twitter/
 
|3
 
|-
 
|40
 
|Structural basis for continued  antibody evasion by the SARS-CoV-2 receptor binding domain
 
|https://www.science.org/doi/10.1126/science.abl6251?utm_campaign=SciMag&utm_source=Social&utm_medium=Twitter/
 
|3
 
|-
 
|51
 
|Ensemble cryo-electron  microscopy reveals conformational states of the nsp13 helicase in the  SARS-CoV-2 helicase replication-transcription complex
 
|https://www.biorxiv.org/content/10.1101/2021.11.10.468168v1/
 
|3
 
|-
 
|56
 
|Membrane fusion and immune  evasion by the spike protein of SARS-CoV-2 Delta variant
 
|https://www.science.org/doi/10.1126/science.abl9463?utm_campaign=SciMag&utm_source=Social&utm_medium=Twitter/
 
|3
 
|-
 
|57
 
|Structural basis of mismatch  recognition by a SARS-CoV-2 proofreading enzyme
 
|https://www.science.org/doi/full/10.1126/science.abi9310?utm_campaign=SciMag&utm_source=Social&utm_medium=Twitter/
 
|3
 
|-
 
|78
 
|Water-Triggered, Irreversible  Conformational Change of SARS-CoV-2 Main Protease on Passing from the Solid  State to Aqueous Solution
 
|https://pubs.acs.org/doi/10.1021/jacs.1c05301/
 
|3
 
|-
 
|79
 
|A glycan gate controls opening  of the SARS-CoV-2 spike protein
 
|https://www.nature.com/articles/s41557-021-00758-3?utm_source=twitter&utm_medium=social&utm_content=organic&utm_campaign=NGMT_USG_JC01_GL_NRJournals/
 
|3
 
|-
 
|80
 
|The antiandrogen enzalutamide  downregulates TMPRSS2 and reduces cellular entry of SARS-CoV-2 in human lung  cells
 
|https://www.nature.com/articles/s41467-021-24342-y?utm_source=twitter&utm_medium=social&utm_content=organic&utm_campaign=NGMT_USG_JC01_GL_NRJournals/
 
|3
 
|-
 
|81
 
|Identification of  SARS-CoV-2–induced pathways reveals drug repurposing strategies
 
|https://www.science.org/doi/10.1126/sciadv.abh3032/
 
|3
 
|-
 
|82
 
|Mn2+ coordinates  Cap-0-RNA to align substrates for efficient 2′-O-methyl transfer by  SARS-CoV-2 nsp16
 
|https://www.science.org/doi/10.1126/scisignal.abh2071/
 
|3
 
|-
 
|85
 
|A potential interaction  between the SARS-CoV-2 spike protein and nicotinic acetylcholine receptors
 
|https://www.cell.com/biophysj/fulltext/S0006-3495(21)00146-6/
 
|3
 
|-
 
|86
 
|Structural basis of ribosomal  frameshifting during translation of the SARS-CoV-2 RNA genome
 
|https://www.science.org/doi/10.1126/science.abf3546/
 
|3
 
|-
 
|88
 
|Protective efficacy of  Ad26.COV2.S against SARS-CoV-2 B.1.351 in macaques
 
|https://www.nature.com/articles/s41586-021-03732-8?utm_source=twitter&utm_medium=social&utm_content=organic&utm_campaign=NGMT_USG_JC01_GL_Nature/
 
|3
 
|-
 
|90
 
|Cryo-EM structure of  SARS-CoV-2 ORF3a in lipid nanodiscs
 
|https://www.nature.com/articles/s41594-021-00619-0?utm_source=twitter&utm_medium=social&utm_content=organic&utm_campaign=NGMT_USG_JC01_GL_NRJournals/
 
|3
 
|-
 
|102
 
|A multi-omics investigation of  the composition and function of extracellular vesicles along the temporal  trajectory of COVID-19
 
|https://www.nature.com/articles/s42255-021-00425-4?utm_source=twitter&utm_medium=social&utm_content=organic&utm_campaign=NGMT_USG_JC01_GL_NRJournals/
 
|3
 
|-
 
|105
 
|Improving SARS-CoV-2  structures: Peer review by early coordinate release
 
|https://www.cell.com/biophysj/fulltext/S0006-3495(21)00046-1/
 
|3
 
|-
 
|107
 
|Cooperative multivalent  receptor binding promotes exposure of the SARS-CoV-2 fusion machinery core
 
|https://www.biorxiv.org/content/10.1101/2021.05.24.445443v2/
 
|3
 
|-
 
|110
 
|Revealing the spike's real  shape
 
|https://www.science.org/content/blog-post/revealing-spike-s-real-shape/
 
|3
 
|-
 
|113
 
|SARS-CoV-2 gene content and  COVID-19 mutation impact by comparing 44 Sarbecovirus genomes
 
|https://www.nature.com/articles/s41467-021-22905-7?utm_source=twitter&utm_medium=social&utm_content=organic&utm_campaign=NGMT_USG_JC01_GL_NRJournals/
 
|3
 
|-
 
|116
 
|X-ray screening identifies  active site and allosteric inhibitors of SARS-CoV-2 main protease
 
|https://www.science.org/doi/10.1126/science.abf7945/
 
|3
 
|-
 
|118
 
|Viral genomes reveal patterns  of the SARS-CoV-2 outbreak in Washington State
 
|https://www.science.org/doi/10.1126/scitranslmed.abf0202/
 
|3
 
|-
 
|120
 
|COVID-19 tissue atlases reveal  SARS-CoV-2 pathology and cellular targets
 
|https://www.nature.com/articles/s41586-021-03570-8?utm_source=twitter&utm_medium=social&utm_content=organic&utm_campaign=NGMT_USG_JC01_GL_Nature/
 
|3
 
|-
 
|125
 
|Structural biology in the time  of COVID-19: perspectives on methods and milestones
 
|https://journals.iucr.org/m/issues/2021/03/00/mf5052/index.html/
 
|3
 
|-
 
|127
 
|Massively Multiplexed Affinity  Characterization of Therapeutic Antibodies Against SARS-CoV-2 Variants
 
|https://www.biorxiv.org/content/10.1101/2021.04.27.440939v1/
 
|3
 
|-
 
|128
 
|Fine-tuning the Spike: Role of  the nature and topology of the glycan shield in the structure and dynamics of  the SARS-CoV-2 S
 
|https://www.biorxiv.org/content/10.1101/2021.04.01.438036v2/
 
|3
 
|-
 
|133
 
|Identification of lectin  receptors for conserved SARS-CoV-2 glycosylation sites
 
|https://www.biorxiv.org/content/10.1101/2021.04.01.438087v1/
 
|3
 
|-
 
|134
 
|Electrostatic interactions  between the SARS-CoV-2 virus and a charged electret fibre
 
|https://pubs.rsc.org/en/content/articlelanding/2021/sm/d1sm00232e/
 
|3
 
|-
 
|144
 
|How SARS-CoV-2’s Sugar-Coated  Shield Helps Activate the Virus
 
|https://www.biophysics.org/news-room/how-sars-cov-2s-sugar-coated-shield-helps-activate-the-virus/
 
|3
 
|-
 
|147
 
|Structural basis for  backtracking by the SARS-CoV-2 replication-transcription complex
 
|https://www.biorxiv.org/content/10.1101/2021.03.13.435256v1/
 
|3
 
|-
 
|155
 
|The emerging plasticity of  SARS-CoV-2
 
|https://science.sciencemag.org/content/371/6536/1306.full/
 
|3
 
|-
 
|157
 
|Prospective mapping of viral  mutations that escape antibodies used to treat COVID-19
 
|https://science.sciencemag.org/content/371/6531/850/
 
|3
 
|-
 
|3
 
|Identification of lection  receptor for conserved SARS-C0V-2 glycosilation
 
|https://www.biorxiv.org/content/10.1101/2021.04.01.438087v1/
 
|3
 
|-
 
|5
 
|Computational epitope map of  SARS-CoV-2 spike protein
 
|https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1008790/
 
|3
 
|-
 
|8
 
|Activity of convalescent and  vaccine serum against SARS-CoV-2 Omicron
 
|https://www.nature.com/articles/s41586-022-04399-5#Echobox=1641674359/
 
|4
 
|-
 
|13
 
|Structural basis of Omicron  neutralization by affinity-matured public antibodies
 
|https://www.biorxiv.org/content/10.1101/2022.01.03.474825v1/
 
|4
 
|-
 
|18
 
|The hyper-transmissible  SARS-CoV-2 Omicron variant exhibits significant antigenic change, vaccine  escape and a switch in cell entry mechanism
 
|https://www.gla.ac.uk/media/Media_829360_smxx.pdf/
 
|4
 
|-
 
|20
 
|Exponential growth, high  prevalence of SARS-CoV-2, and vaccine effectiveness associated with the Delta  variant
 
|https://www.science.org/doi/10.1126/science.abl9551?utm_campaign=SciMag&utm_source=Social&utm_medium=Twitter/
 
|4
 
|-
 
|23
 
|CryoEM structure of Omicron  (B.1.1.529) variant spike protein in complex with human ACE2 reveals new salt  bridges formed by mutated residues R498 and R493 in the RBD and residues D38  and E35, respectively, in ACE2.
 
|https://twitter.com/cryoem_UBC/status/1471390036851511299/
 
|4
 
|-
 
|27
 
|SARS-CoV-2 B.1.1.529 variant  (Omicron) evades neutralization by sera from vaccinated and convalescent  individuals
 
|https://www.medrxiv.org/content/10.1101/2021.12.08.21267491v1/
 
|4
 
|-
 
|28
 
|Modelling the potential  consequences of the Omicron SARS-CoV-2 variant in England
 
|https://cmmid.github.io/topics/covid19/omicron-england.html/
 
|4
 
|-
 
|29
 
|Omicron and Delta Variant of  SARS-CoV-2: A Comparative Computational Study of Spike protein
 
|https://www.biorxiv.org/content/10.1101/2021.12.02.470946v1/
 
|4
 
|-
 
|30
 
|Where did ‘weird’ Omicron come  from?
 
|https://www.science.org/content/article/where-did-weird-omicron-come?utm_campaign=NewsfromScience&utm_source=Social&utm_medium=Twitter/
 
|4
 
|-
 
|31
 
|The Omicron SARSCoV2  mutations in each gene and the drugs, candidates, & vaccines that target  them. The 3CL protease and RNA polymerase have only 1 mutation each (unlike  spike, which has >30); the drug candidates targeting them might be more  likely to retain efficacy.
 
|https://twitter.com/davidrliu/status/1464714206150807559/photo/1/
 
|4
 
|-
 
|38
 
|The mutation map of the 5  Variants of Concern
 
|https://covariants.org/shared-mutations/
 
|4
 
|-
 
|55
 
|Classification of Omicron  (B.1.1.529): SARS-CoV-2 Variant of Concern
 
|https://www.who.int/news/item/26-11-2021-classification-of-omicron-(b.1.1.529)-sars-cov-2-variant-of-concern/
 
|4
 
|-
 
|60
 
|Molecular basis of immune  evasion by the Delta and Kappa SARS-CoV-2 variants
 
|https://www.science.org/doi/10.1126/science.abl8506?utm_campaign=SciMag&utm_source=Social&utm_medium=Twitter/
 
|4
 
|-
 
|68
 
|The mutation that helps Delta  spread like wildfire
 
|https://www.nature.com/articles/d41586-021-02275-2?utm_source=twitter&utm_medium=social&utm_content=organic&utm_campaign=NGMT_USG_JC01_GL_Nature/
 
|4
 
|-
 
|77
 
|SARS-CoV-2 immune evasion by  the B.1.427/B.1.429 variant of concern
 
|https://www.science.org/doi/10.1126/science.abi7994/
 
|4
 
|-
 
|97
 
|Spatiotemporal invasion  dynamics of SARS-CoV-2 lineage B.1.1.7 emergence
 
|https://www.science.org/doi/full/10.1126/science.abj0113/
 
|4
 
|-
 
|111
 
|Reduced sensitivity of  SARS-CoV-2 variant Delta to antibody neutralization
 
|https://www.nature.com/articles/s41586-021-03777-9?utm_source=twitter&utm_medium=social&utm_content=organic&utm_campaign=NGMT_USG_JC01_GL_Nature/
 
|4
 
|-
 
|122
 
|Fe-S cofactors in the  SARS-CoV-2 RNA-dependent RNA polymerase are potential antiviral targets
 
|https://www.science.org/doi/10.1126/science.abi5224/
 
|4
 
|-
 
|130
 
|Coronavirus variants are  spreading in India — what scientists know so far
 
|https://www.nature.com/articles/d41586-021-01274-7?utm_source=twitter&utm_medium=social&utm_content=organic&utm_campaign=NGMT_USG_JC01_GL_Nature/
 
|4
 
|-
 
|150
 
|Genomics and epidemiology of  the P.1 SARS-CoV-2 lineage in Manaus, Brazil
 
|https://www.science.org/doi/10.1126/science.abh2644/
 
|4
 
|-
 
|154
 
|A novel variant of interest of  SARS-CoV-2 with multiple spike mutations detected through travel surveillance  in Africa
 
|https://www.krisp.org.za/publications.php?pubid=330/
 
|4
 
|-
 
|158
 
|Antibody resistance of  SARS-CoV-2 variants B.1.351 and B.1.1.7
 
|https://www.nature.com/articles/s41586-021-03398-2/
 
|4
 
|-
 
|159
 
|Development of potency,  breadth and resilience to viral escape mutation in SARS-CoV-2 neutralizing  anitbodies
 
|https://www.biorxiv.org/content/10.1101/2021.03.07.434227v1/
 
|4
 
|-
 
|160
 
|SARS-CoV-2 Variants | UK+  South African + Brazil Variants/
 
|https://www.youtube.com/watch?v=OYgVmOLF2mY/
 
|4
 
|-
 
|162
 
|Summary of Clinical Data on  New Coronavirus Variant, Suggests Humans can still win the Long war
 
|https://m.weibo.cn/status/4647414625212687?sourceType=weixin&from=10AC195010&wm=4260_0001&featurecode=newtitle/
 
|4
 
|-
 
|163
 
|Delta Variant US confirmed rate doubles in 7 days!
 
|https://mp.weixin.qq.com/s/8lRnwUUz_3dV7QMtfg2s4w/
 
|4
 
|-
 
|164
 
|Delta variant isn’t over,  Delta+ variant strikes again
 
|https://m.weibo.cn/status/4650675290506335?sourceType=weixin&from=10B6195010&wm=2468_1001&featurecode=newtitle/
 
|4
 
|-
 
|165
 
|Delta coronavirus variant:  scientists brace for impact
 
|https://www.nature.com/articles/d41586-021-01696-3?utm_source=twt_nat&utm_medium=social&utm_campaign=nature/
 
|4
 
|-
 
|166
 
|Menacing: What is the new crown Delta mutant, and how can we respond?
 
|https://mp.weixin.qq.com/s/g9gPLEN6R02F49eRGGSuAA/
 
|4
 
|-
 
|167
 
|Race to understand Sars-CoV-2  variants amid fears virus might evade vaccines
 
|https://www.chemistryworld.com/news/race-to-understand-sars-cov-2-variants-amid-fears-virus-might-evade-vaccines/4013891.article/
 
|4
 
|-
 
|168
 
|New versions of Omicron are masters of immune evasion
 
|https://www.science.org/content/article/new-versions-omicron-are-masters-immune-evasion
 
|
 
|-
 
|169
 
|Twitt from Jon Cohen
 
|https://twitter.com/sciencecohen/status/1524852142476959744
 
|
 
|-
 
|170
 
|Phylogenetic Analysis and Structural Modeling of SARS-CoV-2 Spike Protein Reveals an Evolutionary Distinct and Proteolytically Sensitive Activation Loop
 
|https://www.sciencedirect.com/science/article/pii/S0022283620302874
 
|
 
|-
 
|171
 
|Comparative phylogenetic analysis of SARS-CoV-2 spike protein—possibility effect on virus spillover
 
|https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8083239/
 
|
 
|-
 
|172
 
|Antibody escape of SARS-CoV-2 Omicron BA.4 and BA.5 from vaccine and BA.1 serum
 
|https://www.cell.com/cell/fulltext/S0092-8674(22)00710-3
 
|
 
|-
 
|173
 
|Mutational effects on ACE2-binding affinity and expression in SARS-CoV-2 variant RBDs
 
|https://jbloomlab.github.io/SARS-CoV-2-RBD_DMS_Omicron/RBD-heatmaps/
 
|
 
|-
 
|174
 
|Omicron RBD DMS
 
|https://jbloomlab.github.io/SARS-CoV-2-RBD_DMS_Omicron/
 
|
 
|-
 
|175
 
|Principles of SARS-CoV-2 glycosylation
 
|https://www.sciencedirect.com/science/article/pii/S0959440X22000811
 
|
 
|-
 
|176
 
|BA.2.12.1, BA.4 and BA.5 escape antibodies elicited by Omicron infection
 
|https://www.nature.com/articles/s41586-022-04980-y
 
|
 
|-
 
|177
 
|Nature:谢晓亮/曹云龙等揭示Omicron感染极难实现群体免疫
 
|https://mp.weixin.qq.com/s/j2RTj0Jmvt1A_PpEpmtfLw
 
|
 
|-
 
|178
 
|Worldometer COVID-19 CORONAVIRUS PANDEMIC
 
|https://www.worldometers.info/coronavirus/
 
|
 
|-
 
|179
 
|Twitt from Mrigank Shail, MD
 
|https://twitter.com/mrigankshail/status/1536811673117511680
 
|
 
|-
 
|180
 
|Neutralization Escape by SARS-CoV-2 Omicron Subvariants BA.2.12.1, BA.4, and BA.5
 
|https://www.nejm.org/doi/full/10.1056/NEJMc2206576
 
|
 
|-
 
|181
 
|Drivers of adaptive evolution during chronic SARS-CoV-2 infections
 
|https://www.nature.com/articles/s41591-022-01882-4.pdf
 
|
 
|-
 
|182
 
|CHRONIC COVID: THE EVOLVING STORY
 
|https://media.nature.com/original/magazine-assets/d41586-022-01613-2/d41586-022-01613-2.pdf
 
|
 
|-
 
|183
 
|What Omicron’s BA.4 and BA.5 variants mean for the pandemic
 
|https://www.nature.com/articles/d41586-022-01730-y?utm_term=Autofeed&utm_campaign=nature&utm_medium=Social&utm_source=Twitter#Echobox=1656123519
 
|
 
|-
 
|184
 
|Analysis of 6.4 million SARS-CoV-2 genomes identifies mutations associated with fitness
 
|https://www.science.org/doi/10.1126/science.abm1208
 
|
 
|-
 
|185
 
|The BA.5 story: The takeover by this Omicron sub-variant is not pretty
 
|https://erictopol.substack.com/p/the-ba5-story
 
|
 
|-
 
|186
 
|Shifting mutational constraints in the SARS-CoV-2 receptor-binding domain during viral evolution
 
|https://www.science.org/doi/10.1126/science.abo7896
 
|
 
|-
 
|187
 
|Supplementary Appendix Supplement to: Zhao X, Zhang R, Qiao S, et al. Omicron SARS-CoV-2 neutralization from inactivated and ZF2001 vaccines
 
|https://www.nejm.org/doi/suppl/10.1056/NEJMc2206900/suppl_file/nejmc2206900_appendix.pdf
 
|
 
|-
 
|188
 
|Genetic drift, selection and the evolution of the mutation rate
 
|https://doi.org/10.1038/nrg.2016.104
 
|
 
|-
 
|189
 
|The worst virus variant just arrived. The pandemic is not over.
 
|https://www.washingtonpost.com/opinions/2022/07/07/worst-virus-variant-just-arrived-pandemic-is-not-over/
 
|
 
|-
 
|190
 
|The molecular epidemiology of multiple zoonotic origins of SARS-CoV-2
 
|https://www.science.org/doi/10.1126/science.abp8337
 
|
 
|-
 
|191
 
|Mendelian randomization for causal inference accounting for pleiotropy and sample structure using genome-wide summary statistics
 
|https://doi.org/10.1073/pnas.2106858119
 
|
 
|-
 
|192
 
|Evidence for Strong Mutation Bias toward, and Selection against, U Content in SARS-CoV-2: Implications for Vaccine Design
 
|https://doi.org/10.1093/molbev/msaa188
 
|
 
|-
 
|193
 
|Causes and Consequences of Purifying Selection on SARS-CoV-2
 
|https://doi.org/10.1093/gbe/evab196
 
|
 
|-
 
|194
 
|The imminent BA.5 vaccine booster
 
|https://erictopol.substack.com/p/the-imminent-ba5-vaccine-booster
 
|
 
|-
 
|195
 
|Nonsynonymous to Synonymous Substitution Ratio ka/ks: Measurement for Rate of Evolution in Evolutionary Computation
 
|http://dx.doi.org/10.1007/978-3-540-87700-4_45
 
|
 
|-
 
|196
 
|Continuous genomic diversification of long polynucleotide fragments drives the emergence of new SARS-CoV-2 variants of concern
 
|https://doi.org/10.1093/pnasnexus/pgac018
 
|
 
|-
 
|197
 
|The Short- and Long-Range RNA-RNA Interactome of SARS-CoV-2
 
|https://doi.org/10.1016/j.molcel.2020.11.004
 
|
 
|-
 
|198
 
|Mendelian randomization for causal inference accounting for pleiotropy and sample structure using genome-wide summary statistics
 
|https://doi.org/10.1073/pnas.2106858119
 
|
 
|-
 
|199
 
|Evolution of the SARS-CoV-2 mutational spectrum
 
|https://doi.org/10.1101/2022.11.19.517207
 
|
 
|-
 
|200
 
|SARS-CoV-2 evolution, post-Omicron
 
|https://virological.org/t/sars-cov-2-evolution-post-omicron/911/1
 
|
 
|-
 
|201
 
|Next Covid strain may be more dangerous than Omicron, study finds
 
|https://www.livemint.com/science/health/next-covid-strain-may-be-more-dangerous-than-omicron-study-shows-11669629257488.html
 
|
 
|-
 
|202
 
|COVID: what we know about new omicron variant BF.7
 
|<nowiki>https://theconversation.com/covid-what-we-know-about-new-omicron-variant-bf-7-196323</nowiki>
 
|
 
|-
 
|203
 
|Omicron subvariants dominating the U.S. have ‘alarming’ ability to evade both immunity and medical treatments, scientists warn
 
|<nowiki>https://fortune.com/2022/12/15/omicron-subvariants-xbb-bq-1-have-alarming-ability-to-evade-both-immunity-and-medical-treatments-scientists-warn/</nowiki>
 
|
 
|}
 

Revision as of 11:51, 26 December 2022

Summary

The outbreak of COVID-19 caused by SARS-CoV-2 has become a global health crisis. The RNA genome of the virus allows rapid mutation and the emergence of new variants of concern (VOCs), improving its fitness. The deLeMus website provides information about the key mutations of different variants that have surged since the outbreak. One mutation captured is N440K, which is in the RBD of the spike protein that is present in BA.1, and it caused resistance to imdevimab [https://doi.org/10.1038/s41579-022-00809-7]. From the mutational information, we can investigate the patterns of mutation of the virus, allowing further research on their functions and possibly prediction of new variants in the future.


Since the outbreak of COVID-19, there have been new variants emerging. Omicron, the latest lineage designated as a VOC by the WHO after being reported in South Africa in November 2021, has various subvariants, including BA.1 (the first subvariant of omicron), BA.2, BA.4, and BA.5. Omicron was spreading very quickly to many countries after its first report. Soon after the discovery of BA.1, BA.2 was detected and spread across the globe. In April 2022, BA.4 and BA.5 were monitored by the WHO after being found in multiple countries, and they showed a significant increase in growth advantage when compared to BA.2. These two variants became dominant in the UK, the US, and Germany in June 2022. In the meantime, BA.2.12.1 and BA.2.75 were also spreading in the US and India respectively in May 2022. In August 2022, XBB, which is a recombinant of BA.2.10.1 and BA.2.75, was found to have a small outbreak in various countries such as Singapore and Bangladesh. After that, in October 2022, BQ.1, which is a subvariant of BA.5 prevalent in France, was found.


The omicron variant is notorious for having a large number of mutations, some of which are known to be involved in escaping various antibodies. The deLeMus website has captured many of these mutations, one of which is F486V in BA.4 and BA.5. It has been reported in some research showing that this loss of phenylalanine in the RBD of the spike protein is in a lot of binding sites of monoclonal antibodies (mAbs). S704L, a reported novel mutation in BA.2.12.1 in the post-RBD region of the spike, has also been captured by deLeMus. The captured BA.2.75 mutations include K147E, I210V, G257S, 3 mutations in the N-terminal domain (NTD), and N460K, a mutation in RBD, which are all reported. For BQ.1, deLeMus captured a reported RBD mutation K444T. Two reported mutations, H146Q (NTD) and V445P (RBD), are detected by deLeMus for XBB.


In addition to that, deLemus can reveal emerging sites that could potentially show up in future variants. By tracking and evaluating the mutation activity in the virus from the beginning of the pandemic, we have identified sites in different domains of the spike protein.  For the Receptor Binding Domain (RBM), we have outlined potential sites as shown in the figure below.  Most of the mutation sites reported by deLemus have been found in different Omicron lineages, and thus it is possible that the remaining sites marked as red circles may be established in variants in the near future. In fact, one of the outlined mutations S494P has been shown by studies to disrupt the binding of antibodies and escape vaccines, possessing similar properties to previously reported mutations in Omicron such as N440K and G446S.

Monthly Leading Sites

Leading Mutation Map

TEMP

Variant Distribution

TEMP